1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.optim.nonlinear.vector.leastsquares; 23 24 import org.hipparchus.linear.RealMatrix; 25 import org.hipparchus.linear.RealVector; 26 import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation; 27 28 /** 29 * Applies a dense weight matrix to an evaluation. 30 * 31 */ 32 class DenseWeightedEvaluation extends AbstractEvaluation { 33 34 /** the unweighted evaluation */ 35 private final Evaluation unweighted; 36 /** reference to the weight square root matrix */ 37 private final RealMatrix weightSqrt; 38 39 /** 40 * Create a weighted evaluation from an unweighted one. 41 * 42 * @param unweighted the evalutation before weights are applied 43 * @param weightSqrt the matrix square root of the weight matrix 44 */ 45 DenseWeightedEvaluation(final Evaluation unweighted, 46 final RealMatrix weightSqrt) { 47 // weight square root is square, nR=nC=number of observations 48 super(weightSqrt.getColumnDimension()); 49 this.unweighted = unweighted; 50 this.weightSqrt = weightSqrt; 51 } 52 53 /* apply weights */ 54 55 /** {@inheritDoc} */ 56 @Override 57 public RealMatrix getJacobian() { 58 return weightSqrt.multiply(this.unweighted.getJacobian()); 59 } 60 61 /** {@inheritDoc} */ 62 @Override 63 public RealVector getResiduals() { 64 return this.weightSqrt.operate(this.unweighted.getResiduals()); 65 } 66 67 /* delegate */ 68 69 /** {@inheritDoc} */ 70 @Override 71 public RealVector getPoint() { 72 return unweighted.getPoint(); 73 } 74 75 }