View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.optim.nonlinear.vector.leastsquares;
23  
24  import org.hipparchus.linear.RealMatrix;
25  import org.hipparchus.linear.RealVector;
26  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
27  
28  /**
29   * Applies a dense weight matrix to an evaluation.
30   *
31   */
32  class DenseWeightedEvaluation extends AbstractEvaluation {
33  
34      /** the unweighted evaluation */
35      private final Evaluation unweighted;
36      /** reference to the weight square root matrix */
37      private final RealMatrix weightSqrt;
38  
39      /**
40       * Create a weighted evaluation from an unweighted one.
41       *
42       * @param unweighted the evalutation before weights are applied
43       * @param weightSqrt the matrix square root of the weight matrix
44       */
45      DenseWeightedEvaluation(final Evaluation unweighted,
46                              final RealMatrix weightSqrt) {
47          // weight square root is square, nR=nC=number of observations
48          super(weightSqrt.getColumnDimension());
49          this.unweighted = unweighted;
50          this.weightSqrt = weightSqrt;
51      }
52  
53      /* apply weights */
54  
55      /** {@inheritDoc} */
56      @Override
57      public RealMatrix getJacobian() {
58          return weightSqrt.multiply(this.unweighted.getJacobian());
59      }
60  
61      /** {@inheritDoc} */
62      @Override
63      public RealVector getResiduals() {
64          return this.weightSqrt.operate(this.unweighted.getResiduals());
65      }
66  
67      /* delegate */
68  
69      /** {@inheritDoc} */
70      @Override
71      public RealVector getPoint() {
72          return unweighted.getPoint();
73      }
74  
75  }