View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.optim.linear;
23  
24  import java.util.ArrayList;
25  import java.util.List;
26  
27  import org.hipparchus.exception.MathIllegalStateException;
28  import org.hipparchus.optim.LocalizedOptimFormats;
29  import org.hipparchus.optim.OptimizationData;
30  import org.hipparchus.optim.PointValuePair;
31  import org.hipparchus.util.FastMath;
32  import org.hipparchus.util.Precision;
33  
34  /**
35   * Solves a linear problem using the "Two-Phase Simplex" method.
36   * <p>
37   * The {@link SimplexSolver} supports the following {@link OptimizationData} data provided
38   * as arguments to {@link #optimize(OptimizationData...)}:
39   * <ul>
40   *   <li>objective function: {@link LinearObjectiveFunction} - mandatory</li>
41   *   <li>linear constraints {@link LinearConstraintSet} - mandatory</li>
42   *   <li>type of optimization: {@link org.hipparchus.optim.nonlinear.scalar.GoalType GoalType}
43   *    - optional, default: {@link org.hipparchus.optim.nonlinear.scalar.GoalType#MINIMIZE MINIMIZE}</li>
44   *   <li>whether to allow negative values as solution: {@link NonNegativeConstraint} - optional, default: true</li>
45   *   <li>pivot selection rule: {@link PivotSelectionRule} - optional, default {@link PivotSelectionRule#DANTZIG}</li>
46   *   <li>callback for the best solution: {@link SolutionCallback} - optional</li>
47   *   <li>maximum number of iterations: {@link org.hipparchus.optim.MaxIter} - optional, default: {@link Integer#MAX_VALUE}</li>
48   * </ul>
49   * <p>
50   * <b>Note:</b> Depending on the problem definition, the default convergence criteria
51   * may be too strict, resulting in {@link MathIllegalStateException} or
52   * {@link MathIllegalStateException}. In such a case it is advised to adjust these
53   * criteria with more appropriate values, e.g. relaxing the epsilon value.
54   * <p>
55   * Default convergence criteria:
56   * <ul>
57   *   <li>Algorithm convergence: 1e-6</li>
58   *   <li>Floating-point comparisons: 10 ulp</li>
59   *   <li>Cut-Off value: 1e-10</li>
60    * </ul>
61   * <p>
62   * The cut-off value has been introduced to handle the case of very small pivot elements
63   * in the Simplex tableau, as these may lead to numerical instabilities and degeneracy.
64   * Potential pivot elements smaller than this value will be treated as if they were zero
65   * and are thus not considered by the pivot selection mechanism. The default value is safe
66   * for many problems, but may need to be adjusted in case of very small coefficients
67   * used in either the {@link LinearConstraint} or {@link LinearObjectiveFunction}.
68   *
69   */
70  public class SimplexSolver extends LinearOptimizer {
71      /** Default amount of error to accept in floating point comparisons (as ulps). */
72      static final int DEFAULT_ULPS = 10;
73  
74      /** Default cut-off value. */
75      static final double DEFAULT_CUT_OFF = 1e-10;
76  
77      /** Default amount of error to accept for algorithm convergence. */
78      private static final double DEFAULT_EPSILON = 1.0e-6;
79  
80      /** Amount of error to accept for algorithm convergence. */
81      private final double epsilon;
82  
83      /** Amount of error to accept in floating point comparisons (as ulps). */
84      private final int maxUlps;
85  
86      /**
87       * Cut-off value for entries in the tableau: values smaller than the cut-off
88       * are treated as zero to improve numerical stability.
89       */
90      private final double cutOff;
91  
92      /** The pivot selection method to use. */
93      private PivotSelectionRule pivotSelection;
94  
95      /**
96       * The solution callback to access the best solution found so far in case
97       * the optimizer fails to find an optimal solution within the iteration limits.
98       */
99      private SolutionCallback solutionCallback;
100 
101     /**
102      * Builds a simplex solver with default settings.
103      */
104     public SimplexSolver() {
105         this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF);
106     }
107 
108     /**
109      * Builds a simplex solver with a specified accepted amount of error.
110      *
111      * @param epsilon Amount of error to accept for algorithm convergence.
112      */
113     public SimplexSolver(final double epsilon) {
114         this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF);
115     }
116 
117     /**
118      * Builds a simplex solver with a specified accepted amount of error.
119      *
120      * @param epsilon Amount of error to accept for algorithm convergence.
121      * @param maxUlps Amount of error to accept in floating point comparisons.
122      */
123     public SimplexSolver(final double epsilon, final int maxUlps) {
124         this(epsilon, maxUlps, DEFAULT_CUT_OFF);
125     }
126 
127     /**
128      * Builds a simplex solver with a specified accepted amount of error.
129      *
130      * @param epsilon Amount of error to accept for algorithm convergence.
131      * @param maxUlps Amount of error to accept in floating point comparisons.
132      * @param cutOff Values smaller than the cutOff are treated as zero.
133      */
134     public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) {
135         this.epsilon = epsilon;
136         this.maxUlps = maxUlps;
137         this.cutOff = cutOff;
138         this.pivotSelection = PivotSelectionRule.DANTZIG;
139     }
140 
141     /**
142      * {@inheritDoc}
143      *
144      * @param optData Optimization data. In addition to those documented in
145      * {@link LinearOptimizer#optimize(OptimizationData...)
146      * LinearOptimizer}, this method will register the following data:
147      * <ul>
148      *  <li>{@link SolutionCallback}</li>
149      *  <li>{@link PivotSelectionRule}</li>
150      * </ul>
151      *
152      * @return {@inheritDoc}
153      * @throws MathIllegalStateException if the maximal number of iterations is exceeded.
154      * @throws org.hipparchus.exception.MathIllegalArgumentException if the dimension
155      * of the constraints does not match the dimension of the objective function
156      */
157     @Override
158     public PointValuePair optimize(OptimizationData... optData)
159         throws MathIllegalStateException {
160         // Set up base class and perform computation.
161         return super.optimize(optData);
162     }
163 
164     /**
165      * {@inheritDoc}
166      *
167      * @param optData Optimization data.
168      * In addition to those documented in
169      * {@link LinearOptimizer#parseOptimizationData(OptimizationData[])
170      * LinearOptimizer}, this method will register the following data:
171      * <ul>
172      *  <li>{@link SolutionCallback}</li>
173      *  <li>{@link PivotSelectionRule}</li>
174      * </ul>
175      */
176     @Override
177     protected void parseOptimizationData(OptimizationData... optData) {
178         // Allow base class to register its own data.
179         super.parseOptimizationData(optData);
180 
181         // reset the callback before parsing
182         solutionCallback = null;
183 
184         for (OptimizationData data : optData) {
185             if (data instanceof SolutionCallback) {
186                 solutionCallback = (SolutionCallback) data;
187                 continue;
188             }
189             if (data instanceof PivotSelectionRule) {
190                 pivotSelection = (PivotSelectionRule) data;
191                 continue;
192             }
193         }
194     }
195 
196     /**
197      * Returns the column with the most negative coefficient in the objective function row.
198      *
199      * @param tableau Simple tableau for the problem.
200      * @return the column with the most negative coefficient.
201      */
202     private Integer getPivotColumn(SimplexTableau tableau) {
203         double minValue = 0;
204         Integer minPos = null;
205         for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) {
206             final double entry = tableau.getEntry(0, i);
207             // check if the entry is strictly smaller than the current minimum
208             // do not use a ulp/epsilon check
209             if (entry < minValue) {
210                 minValue = entry;
211                 minPos = i;
212 
213                 // Bland's rule: chose the entering column with the lowest index
214                 if (pivotSelection == PivotSelectionRule.BLAND && isValidPivotColumn(tableau, i)) {
215                     break;
216                 }
217             }
218         }
219         return minPos;
220     }
221 
222     /**
223      * Checks whether the given column is valid pivot column, i.e. will result
224      * in a valid pivot row.
225      * <p>
226      * When applying Bland's rule to select the pivot column, it may happen that
227      * there is no corresponding pivot row. This method will check if the selected
228      * pivot column will return a valid pivot row.
229      *
230      * @param tableau simplex tableau for the problem
231      * @param col the column to test
232      * @return {@code true} if the pivot column is valid, {@code false} otherwise
233      */
234     private boolean isValidPivotColumn(SimplexTableau tableau, int col) {
235         for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
236             final double entry = tableau.getEntry(i, col);
237 
238             // do the same check as in getPivotRow
239             if (Precision.compareTo(entry, 0d, cutOff) > 0) {
240                 return true;
241             }
242         }
243         return false;
244     }
245 
246     /**
247      * Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
248      *
249      * @param tableau Simplex tableau for the problem.
250      * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}).
251      * @return the row with the minimum ratio.
252      */
253     private Integer getPivotRow(SimplexTableau tableau, final int col) {
254         // create a list of all the rows that tie for the lowest score in the minimum ratio test
255         List<Integer> minRatioPositions = new ArrayList<>();
256         double minRatio = Double.MAX_VALUE;
257         for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
258             final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
259             final double entry = tableau.getEntry(i, col);
260 
261             // only consider pivot elements larger than the cutOff threshold
262             // selecting others may lead to degeneracy or numerical instabilities
263             if (Precision.compareTo(entry, 0d, cutOff) > 0) {
264                 final double ratio = FastMath.abs(rhs / entry);
265                 // check if the entry is strictly equal to the current min ratio
266                 // do not use a ulp/epsilon check
267                 final int cmp = Double.compare(ratio, minRatio);
268                 if (cmp == 0) {
269                     minRatioPositions.add(i);
270                 } else if (cmp < 0) {
271                     minRatio = ratio;
272                     minRatioPositions.clear();
273                     minRatioPositions.add(i);
274                 }
275             }
276         }
277 
278         if (minRatioPositions.isEmpty()) {
279             return null;
280         } else if (minRatioPositions.size() > 1) {
281             // there's a degeneracy as indicated by a tie in the minimum ratio test
282 
283             // 1. check if there's an artificial variable that can be forced out of the basis
284             if (tableau.getNumArtificialVariables() > 0) {
285                 for (Integer row : minRatioPositions) {
286                     for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
287                         int column = i + tableau.getArtificialVariableOffset();
288                         final double entry = tableau.getEntry(row, column);
289                         if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
290                             return row;
291                         }
292                     }
293                 }
294             }
295 
296             // 2. apply Bland's rule to prevent cycling:
297             //    take the row for which the corresponding basic variable has the smallest index
298             //
299             // see http://www.stanford.edu/class/msande310/blandrule.pdf
300             // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
301 
302             Integer minRow = null;
303             int minIndex = tableau.getWidth();
304             for (Integer row : minRatioPositions) {
305                 final int basicVar = tableau.getBasicVariable(row);
306                 if (basicVar < minIndex) {
307                     minIndex = basicVar;
308                     minRow = row;
309                 }
310             }
311             return minRow;
312         }
313         return minRatioPositions.get(0);
314     }
315 
316     /**
317      * Runs one iteration of the Simplex method on the given model.
318      *
319      * @param tableau Simple tableau for the problem.
320      * @throws MathIllegalStateException if the allowed number of iterations has been exhausted.
321      * @throws MathIllegalStateException if the model is found not to have a bounded solution.
322      */
323     protected void doIteration(final SimplexTableau tableau)
324         throws MathIllegalStateException {
325 
326         incrementIterationCount();
327 
328         Integer pivotCol = getPivotColumn(tableau);
329         Integer pivotRow = getPivotRow(tableau, pivotCol);
330         if (pivotRow == null) {
331             throw new MathIllegalStateException(LocalizedOptimFormats.UNBOUNDED_SOLUTION);
332         }
333 
334         tableau.performRowOperations(pivotCol, pivotRow);
335     }
336 
337     /**
338      * Solves Phase 1 of the Simplex method.
339      *
340      * @param tableau Simple tableau for the problem.
341      * @throws MathIllegalStateException if the allowed number of iterations has been exhausted,
342      * or if the model is found not to have a bounded solution, or if there is no feasible solution
343      */
344     protected void solvePhase1(final SimplexTableau tableau)
345         throws MathIllegalStateException {
346 
347         // make sure we're in Phase 1
348         if (tableau.getNumArtificialVariables() == 0) {
349             return;
350         }
351 
352         while (!tableau.isOptimal()) {
353             doIteration(tableau);
354         }
355 
356         // if W is not zero then we have no feasible solution
357         if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) {
358             throw new MathIllegalStateException(LocalizedOptimFormats.NO_FEASIBLE_SOLUTION);
359         }
360     }
361 
362     /** {@inheritDoc} */
363     @Override
364     public PointValuePair doOptimize()
365         throws MathIllegalStateException {
366 
367         // reset the tableau to indicate a non-feasible solution in case
368         // we do not pass phase 1 successfully
369         if (solutionCallback != null) {
370             solutionCallback.setTableau(null);
371         }
372 
373         final SimplexTableau tableau =
374             new SimplexTableau(getFunction(),
375                                getConstraints(),
376                                getGoalType(),
377                                isRestrictedToNonNegative(),
378                                epsilon,
379                                maxUlps);
380 
381         solvePhase1(tableau);
382         tableau.dropPhase1Objective();
383 
384         // after phase 1, we are sure to have a feasible solution
385         if (solutionCallback != null) {
386             solutionCallback.setTableau(tableau);
387         }
388 
389         while (!tableau.isOptimal()) {
390             doIteration(tableau);
391         }
392 
393         // check that the solution respects the nonNegative restriction in case
394         // the epsilon/cutOff values are too large for the actual linear problem
395         // (e.g. with very small constraint coefficients), the solver might actually
396         // find a non-valid solution (with negative coefficients).
397         final PointValuePair solution = tableau.getSolution();
398         if (isRestrictedToNonNegative()) {
399             final double[] coeff = solution.getPoint();
400             for (int i = 0; i < coeff.length; i++) {
401                 if (Precision.compareTo(coeff[i], 0, epsilon) < 0) {
402                     throw new MathIllegalStateException(LocalizedOptimFormats.NO_FEASIBLE_SOLUTION);
403                 }
404             }
405         }
406         return solution;
407     }
408 }