View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.hipparchus.ode.nonstiff;
19  
20  import org.hipparchus.ode.EquationsMapper;
21  import org.hipparchus.ode.ODEStateAndDerivative;
22  import org.hipparchus.util.FastMath;
23  
24  /**
25   * This class represents an interpolator over the last step during an
26   * ODE integration for the 6th order Luther integrator.
27   *
28   * <p>This interpolator computes dense output inside the last
29   * step computed. The interpolation equation is consistent with the
30   * integration scheme.</p>
31   *
32   * @see LutherIntegrator
33   */
34  
35  class LutherStateInterpolator extends RungeKuttaStateInterpolator {
36  
37      /** Serializable version identifier */
38      private static final long serialVersionUID = 20160328;
39  
40      /** Square root. */
41      private static final double Q = FastMath.sqrt(21);
42  
43      /** Simple constructor.
44       * @param forward integration direction indicator
45       * @param yDotK slopes at the intermediate points
46       * @param globalPreviousState start of the global step
47       * @param globalCurrentState end of the global step
48       * @param softPreviousState start of the restricted step
49       * @param softCurrentState end of the restricted step
50       * @param mapper equations mapper for the all equations
51       */
52      LutherStateInterpolator(final boolean forward,
53                              final double[][] yDotK,
54                              final ODEStateAndDerivative globalPreviousState,
55                              final ODEStateAndDerivative globalCurrentState,
56                              final ODEStateAndDerivative softPreviousState,
57                              final ODEStateAndDerivative softCurrentState,
58                              final EquationsMapper mapper) {
59          super(forward, yDotK,
60                globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
61                mapper);
62      }
63  
64      /** {@inheritDoc} */
65      @Override
66      protected LutherStateInterpolator create(final boolean newForward, final double[][] newYDotK,
67                                               final ODEStateAndDerivative newGlobalPreviousState,
68                                               final ODEStateAndDerivative newGlobalCurrentState,
69                                               final ODEStateAndDerivative newSoftPreviousState,
70                                               final ODEStateAndDerivative newSoftCurrentState,
71                                               final EquationsMapper newMapper) {
72          return new LutherStateInterpolator(newForward, newYDotK,
73                                             newGlobalPreviousState, newGlobalCurrentState,
74                                             newSoftPreviousState, newSoftCurrentState,
75                                             newMapper);
76      }
77  
78      /** {@inheritDoc} */
79      @Override
80      protected ODEStateAndDerivative computeInterpolatedStateAndDerivatives(final EquationsMapper mapper,
81                                                                             final double time, final double theta,
82                                                                             final double thetaH, final double oneMinusThetaH) {
83  
84          // the coefficients below have been computed by solving the
85          // order conditions from a theorem from Butcher (1963), using
86          // the method explained in Folkmar Bornemann paper "Runge-Kutta
87          // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich
88          // University of Technology, February 9, 2001
89          //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html>
90  
91          // the method is implemented in the rkcheck tool
92          // <https://www.spaceroots.org/software/rkcheck/index.html>.
93          // Running it for order 5 gives the following order conditions
94          // for an interpolator:
95          // order 1 conditions
96          // \sum_{i=1}^{i=s}\left(b_{i} \right) =1
97          // order 2 conditions
98          // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2}
99          // order 3 conditions
100         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6}
101         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3}
102         // order 4 conditions
103         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24}
104         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12}
105         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8}
106         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4}
107         // order 5 conditions
108         // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120}
109         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60}
110         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40}
111         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20}
112         // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30}
113         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15}
114         // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20}
115         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10}
116         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5}
117 
118         // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve
119         // are the b_i for the interpolator. They are found by solving the above equations.
120         // For a given interpolator, some equations are redundant, so in our case when we select
121         // all equations from order 1 to 4, we still don't have enough independent equations
122         // to solve from b_1 to b_7. We need to also select one equation from order 5. Here,
123         // we selected the last equation. It appears this choice implied at least the last 3 equations
124         // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5.
125         // At the end, we get the b_i as polynomials in theta.
126 
127         final double[] interpolatedState;
128         final double[] interpolatedDerivatives;
129 
130         final double coeffDot1 =  1 + theta * ( -54            /   5.0 + theta * (   36                   + theta * ( -47                   + theta *   21)));
131         final double coeffDot2 =  0;
132         final double coeffDot3 =      theta * (-208            /  15.0 + theta * (  320            / 3.0  + theta * (-608            /  3.0 + theta *  112)));
133         final double coeffDot4 =      theta * ( 324            /  25.0 + theta * ( -486            / 5.0  + theta * ( 972            /  5.0 + theta * -567           /  5.0)));
134         final double coeffDot5 =      theta * ((833 + 343 * Q) / 150.0 + theta * ((-637 - 357 * Q) / 30.0 + theta * ((392 + 287 * Q) / 15.0 + theta * (-49 - 49 * Q) /  5.0)));
135         final double coeffDot6 =      theta * ((833 - 343 * Q) / 150.0 + theta * ((-637 + 357 * Q) / 30.0 + theta * ((392 - 287 * Q) / 15.0 + theta * (-49 + 49 * Q) /  5.0)));
136         final double coeffDot7 =      theta * (   3            /   5.0 + theta * (   -3                   + theta *     3));
137 
138         if (getGlobalPreviousState() != null && theta <= 0.5) {
139 
140             final double coeff1    =  1 + theta * ( -27            /   5.0 + theta * (   12                   + theta * ( -47            /  4.0 + theta *   21           /  5.0)));
141             final double coeff2    =  0;
142             final double coeff3    =      theta * (-104            /  15.0 + theta * (  320            / 9.0  + theta * (-152            /  3.0 + theta *  112           /  5.0)));
143             final double coeff4    =      theta * ( 162            /  25.0 + theta * ( -162            / 5.0  + theta * ( 243            /  5.0 + theta * -567           / 25.0)));
144             final double coeff5    =      theta * ((833 + 343 * Q) / 300.0 + theta * ((-637 - 357 * Q) / 90.0 + theta * ((392 + 287 * Q) / 60.0 + theta * (-49 - 49 * Q) / 25.0)));
145             final double coeff6    =      theta * ((833 - 343 * Q) / 300.0 + theta * ((-637 + 357 * Q) / 90.0 + theta * ((392 - 287 * Q) / 60.0 + theta * (-49 + 49 * Q) / 25.0)));
146             final double coeff7    =      theta * (   3            /  10.0 + theta * (   -1                   + theta * (   3            /  4.0)));
147             interpolatedState       = previousStateLinearCombination(thetaH * coeff1, thetaH * coeff2,
148                                                                      thetaH * coeff3, thetaH * coeff4,
149                                                                      thetaH * coeff5, thetaH * coeff6,
150                                                                      thetaH * coeff7);
151             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
152         } else {
153 
154             final double coeff1    =  -1 /  20.0 + theta * (  19            /  20.0 + theta * (  -89             /  20.0  + theta * (   151            /  20.0 + theta *  -21           /   5.0)));
155             final double coeff2    =  0;
156             final double coeff3    = -16 /  45.0 + theta * ( -16            /  45.0 + theta * ( -328             /  45.0  + theta * (   424            /  15.0 + theta * -112           /   5.0)));
157             final double coeff4    =               theta * (                          theta * (  162             /  25.0  + theta * (  -648            /  25.0 + theta *  567           /  25.0)));
158             final double coeff5    = -49 / 180.0 + theta * ( -49            / 180.0 + theta * ((2254 + 1029 * Q) / 900.0  + theta * ((-1372 - 847 * Q) / 300.0 + theta * ( 49 + 49 * Q) /  25.0)));
159             final double coeff6    = -49 / 180.0 + theta * ( -49            / 180.0 + theta * ((2254 - 1029 * Q) / 900.0  + theta * ((-1372 + 847 * Q) / 300.0 + theta * ( 49 - 49 * Q) /  25.0)));
160             final double coeff7    =  -1 /  20.0 + theta * (  -1            /  20.0 + theta * (    1             /   4.0  + theta * (    -3            /   4.0)));
161             interpolatedState       = currentStateLinearCombination(oneMinusThetaH * coeff1, oneMinusThetaH * coeff2,
162                                                                     oneMinusThetaH * coeff3, oneMinusThetaH * coeff4,
163                                                                     oneMinusThetaH * coeff5, oneMinusThetaH * coeff6,
164                                                                     oneMinusThetaH * coeff7);
165             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
166         }
167 
168         return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
169 
170     }
171 
172 }