View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.ode.nonstiff;
24  
25  import org.hipparchus.CalculusFieldElement;
26  import org.hipparchus.Field;
27  import org.hipparchus.ode.FieldEquationsMapper;
28  import org.hipparchus.ode.FieldODEStateAndDerivative;
29  
30  /**
31   * This class represents an interpolator over the last step during an
32   * ODE integration for the 6th order Luther integrator.
33   *
34   * <p>This interpolator computes dense output inside the last
35   * step computed. The interpolation equation is consistent with the
36   * integration scheme.</p>
37   *
38   * @see LutherFieldIntegrator
39   * @param <T> the type of the field elements
40   */
41  
42  class LutherFieldStateInterpolator<T extends CalculusFieldElement<T>>
43      extends RungeKuttaFieldStateInterpolator<T> {
44  
45      /** -49 - 49 q. */
46      private final T c5a;
47  
48      /** 392 + 287 q. */
49      private final T c5b;
50  
51      /** -637 - 357 q. */
52      private final T c5c;
53  
54      /** 833 + 343 q. */
55      private final T c5d;
56  
57      /** -49 + 49 q. */
58      private final T c6a;
59  
60      /** -392 - 287 q. */
61      private final T c6b;
62  
63      /** -637 + 357 q. */
64      private final T c6c;
65  
66      /** 833 - 343 q. */
67      private final T c6d;
68  
69      /** 49 + 49 q. */
70      private final T d5a;
71  
72      /** -1372 - 847 q. */
73      private final T d5b;
74  
75      /** 2254 + 1029 q */
76      private final T d5c;
77  
78      /** 49 - 49 q. */
79      private final T d6a;
80  
81      /** -1372 + 847 q. */
82      private final T d6b;
83  
84      /** 2254 - 1029 q */
85      private final T d6c;
86  
87      /** Simple constructor.
88       * @param field field to which the time and state vector elements belong
89       * @param forward integration direction indicator
90       * @param yDotK slopes at the intermediate points
91       * @param globalPreviousState start of the global step
92       * @param globalCurrentState end of the global step
93       * @param softPreviousState start of the restricted step
94       * @param softCurrentState end of the restricted step
95       * @param mapper equations mapper for the all equations
96       */
97      LutherFieldStateInterpolator(final Field<T> field, final boolean forward,
98                                   final T[][] yDotK,
99                                   final FieldODEStateAndDerivative<T> globalPreviousState,
100                                  final FieldODEStateAndDerivative<T> globalCurrentState,
101                                  final FieldODEStateAndDerivative<T> softPreviousState,
102                                  final FieldODEStateAndDerivative<T> softCurrentState,
103                                  final FieldEquationsMapper<T> mapper) {
104         super(field, forward, yDotK,
105               globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
106               mapper);
107         final T q = field.getZero().add(21).sqrt();
108         c5a = q.multiply(  -49).add(  -49);
109         c5b = q.multiply(  287).add(  392);
110         c5c = q.multiply( -357).add( -637);
111         c5d = q.multiply(  343).add(  833);
112         c6a = q.multiply(   49).add(  -49);
113         c6b = q.multiply( -287).add(  392);
114         c6c = q.multiply(  357).add( -637);
115         c6d = q.multiply( -343).add(  833);
116         d5a = q.multiply(   49).add(   49);
117         d5b = q.multiply( -847).add(-1372);
118         d5c = q.multiply( 1029).add( 2254);
119         d6a = q.multiply(  -49).add(   49);
120         d6b = q.multiply(  847).add(-1372);
121         d6c = q.multiply(-1029).add( 2254);
122     }
123 
124     /** {@inheritDoc} */
125     @Override
126     protected LutherFieldStateInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
127                                                      final FieldODEStateAndDerivative<T> newGlobalPreviousState,
128                                                      final FieldODEStateAndDerivative<T> newGlobalCurrentState,
129                                                      final FieldODEStateAndDerivative<T> newSoftPreviousState,
130                                                      final FieldODEStateAndDerivative<T> newSoftCurrentState,
131                                                      final FieldEquationsMapper<T> newMapper) {
132         return new LutherFieldStateInterpolator<T>(newField, newForward, newYDotK,
133                                                    newGlobalPreviousState, newGlobalCurrentState,
134                                                    newSoftPreviousState, newSoftCurrentState,
135                                                    newMapper);
136     }
137 
138     /** {@inheritDoc} */
139     @SuppressWarnings("unchecked")
140     @Override
141     protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
142                                                                                    final T time, final T theta,
143                                                                                    final T thetaH, final T oneMinusThetaH) {
144 
145         // the coefficients below have been computed by solving the
146         // order conditions from a theorem from Butcher (1963), using
147         // the method explained in Folkmar Bornemann paper "Runge-Kutta
148         // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich
149         // University of Technology, February 9, 2001
150         //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html>
151 
152         // the method is implemented in the rkcheck tool
153         // <https://www.spaceroots.org/software/rkcheck/index.html>.
154         // Running it for order 5 gives the following order conditions
155         // for an interpolator:
156         // order 1 conditions
157         // \sum_{i=1}^{i=s}\left(b_{i} \right) =1
158         // order 2 conditions
159         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2}
160         // order 3 conditions
161         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6}
162         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3}
163         // order 4 conditions
164         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24}
165         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12}
166         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8}
167         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4}
168         // order 5 conditions
169         // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120}
170         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60}
171         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40}
172         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20}
173         // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30}
174         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15}
175         // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20}
176         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10}
177         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5}
178 
179         // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve
180         // are the b_i for the interpolator. They are found by solving the above equations.
181         // For a given interpolator, some equations are redundant, so in our case when we select
182         // all equations from order 1 to 4, we still don't have enough independent equations
183         // to solve from b_1 to b_7. We need to also select one equation from order 5. Here,
184         // we selected the last equation. It appears this choice implied at least the last 3 equations
185         // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5.
186         // At the end, we get the b_i as polynomials in theta.
187 
188         final T coeffDot1 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(   21        ).add( -47          )).add(   36         )).add( -54     /   5.0)).add(1);
189         final T coeffDot2 =  time.getField().getZero();
190         final T coeffDot3 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(  112        ).add(-608    /  3.0)).add(  320   / 3.0 )).add(-208    /  15.0));
191         final T coeffDot4 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply( -567  /  5.0).add( 972    /  5.0)).add( -486   / 5.0 )).add( 324    /  25.0));
192         final T coeffDot5 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(c5a.divide(5)).add(c5b.divide(15))).add(c5c.divide(30))).add(c5d.divide(150)));
193         final T coeffDot6 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(c6a.divide(5)).add(c6b.divide(15))).add(c6c.divide(30))).add(c6d.divide(150)));
194         final T coeffDot7 =  theta.multiply(theta.multiply(theta.multiply(                                             3.0 ).add(   -3         )).add(   3   /   5.0));
195         final T[] interpolatedState;
196         final T[] interpolatedDerivatives;
197 
198         if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
199 
200             final T s         = thetaH;
201             final T coeff1    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(  21    /  5.0).add( -47    /  4.0)).add(   12         )).add( -27    /   5.0)).add(1));
202             final T coeff2    = time.getField().getZero();
203             final T coeff3    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( 112    /  5.0).add(-152    /  3.0)).add(  320   / 9.0 )).add(-104    /  15.0)));
204             final T coeff4    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-567    / 25.0).add( 243    /  5.0)).add( -162   / 5.0 )).add( 162    /  25.0)));
205             final T coeff5    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(c5a.divide(25)).add(c5b.divide(60))).add(c5c.divide(90))).add(c5d.divide(300))));
206             final T coeff6    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(c6a.divide(25)).add(c6b.divide(60))).add(c6c.divide(90))).add(c6d.divide(300))));
207             final T coeff7    = s.multiply(theta.multiply(theta.multiply(theta.multiply(                                      3    /  4.0 ).add(   -1         )).add(   3    /  10.0)));
208             interpolatedState       = previousStateLinearCombination(coeff1, coeff2, coeff3, coeff4, coeff5, coeff6, coeff7);
209             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
210         } else {
211 
212             final T s         = oneMinusThetaH;
213             final T coeff1    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( -21   /   5.0).add(   151  /  20.0)).add( -89   /   20.0)).add(  19 /  20.0)).add(- 1 / 20.0));
214             final T coeff2    = time.getField().getZero();
215             final T coeff3    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-112   /   5.0).add(   424  /  15.0)).add( -328  /   45.0)).add( -16 /  45.0)).add(-16 /  45.0));
216             final T coeff4    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( 567   /  25.0).add(  -648  /  25.0)).add(  162  /   25.0))));
217             final T coeff5    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(d5a.divide(25)).add(d5b.divide(300))).add(d5c.divide(900))).add( -49 / 180.0)).add(-49 / 180.0));
218             final T coeff6    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(d6a.divide(25)).add(d6b.divide(300))).add(d6c.divide(900))).add( -49 / 180.0)).add(-49 / 180.0));
219             final T coeff7    = s.multiply(               theta.multiply(theta.multiply(theta.multiply(                        -3  /   4.0 ).add(   1   /    4.0)).add(  -1 /  20.0)).add( -1 /  20.0));
220             interpolatedState       = currentStateLinearCombination(coeff1, coeff2, coeff3, coeff4, coeff5, coeff6, coeff7);
221             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
222         }
223 
224         return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
225 
226     }
227 
228 }