1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 23 package org.hipparchus.ode.nonstiff; 24 25 import org.hipparchus.CalculusFieldElement; 26 import org.hipparchus.Field; 27 import org.hipparchus.ode.FieldEquationsMapper; 28 import org.hipparchus.ode.FieldODEStateAndDerivative; 29 import org.hipparchus.util.MathArrays; 30 31 /** 32 * This class implements a simple Euler integrator for Ordinary 33 * Differential Equations. 34 * 35 * <p>The Euler algorithm is the simplest one that can be used to 36 * integrate ordinary differential equations. It is a simple inversion 37 * of the forward difference expression : 38 * <code>f'=(f(t+h)-f(t))/h</code> which leads to 39 * <code>f(t+h)=f(t)+hf'</code>. The interpolation scheme used for 40 * dense output is the linear scheme already used for integration.</p> 41 * 42 * <p>This algorithm looks cheap because it needs only one function 43 * evaluation per step. However, as it uses linear estimates, it needs 44 * very small steps to achieve high accuracy, and small steps lead to 45 * numerical errors and instabilities.</p> 46 * 47 * <p>This algorithm is almost never used and has been included in 48 * this package only as a comparison reference for more useful 49 * integrators.</p> 50 * 51 * @see MidpointFieldIntegrator 52 * @see ClassicalRungeKuttaFieldIntegrator 53 * @see GillFieldIntegrator 54 * @see ThreeEighthesFieldIntegrator 55 * @see LutherFieldIntegrator 56 * @param <T> the type of the field elements 57 */ 58 59 public class EulerFieldIntegrator<T extends CalculusFieldElement<T>> extends RungeKuttaFieldIntegrator<T> { 60 61 /** Name of integration scheme. */ 62 public static final String METHOD_NAME = EulerIntegrator.METHOD_NAME; 63 64 /** Simple constructor. 65 * Build an Euler integrator with the given step. 66 * @param field field to which the time and state vector elements belong 67 * @param step integration step 68 */ 69 public EulerFieldIntegrator(final Field<T> field, final T step) { 70 super(field, METHOD_NAME, step); 71 } 72 73 /** {@inheritDoc} */ 74 @Override 75 public T[] getC() { 76 return MathArrays.buildArray(getField(), 0); 77 } 78 79 /** {@inheritDoc} */ 80 @Override 81 public T[][] getA() { 82 return MathArrays.buildArray(getField(), 0, 0); 83 } 84 85 /** {@inheritDoc} */ 86 @Override 87 public T[] getB() { 88 final T[] b = MathArrays.buildArray(getField(), 1); 89 b[0] = getField().getOne(); 90 return b; 91 } 92 93 /** {@inheritDoc} */ 94 @Override 95 protected EulerFieldStateInterpolator<T> 96 createInterpolator(final boolean forward, T[][] yDotK, 97 final FieldODEStateAndDerivative<T> globalPreviousState, 98 final FieldODEStateAndDerivative<T> globalCurrentState, 99 final FieldEquationsMapper<T> mapper) { 100 return new EulerFieldStateInterpolator<T>(getField(), forward, yDotK, 101 globalPreviousState, globalCurrentState, 102 globalPreviousState, globalCurrentState, 103 mapper); 104 } 105 106 }