View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.ode.nonstiff;
24  
25  import org.hipparchus.CalculusFieldElement;
26  import org.hipparchus.Field;
27  import org.hipparchus.ode.FieldEquationsMapper;
28  import org.hipparchus.ode.FieldODEStateAndDerivative;
29  
30  /**
31   * This class implements a step interpolator for the classical fourth
32   * order Runge-Kutta integrator.
33   *
34   * <p>This interpolator allows to compute dense output inside the last
35   * step computed. The interpolation equation is consistent with the
36   * integration scheme :</p>
37   * <ul>
38   *   <li>Using reference point at step start:<br>
39   *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
40   *                    + &theta; (h/6) [  (6 - 9 &theta; + 4 &theta;<sup>2</sup>) y'<sub>1</sub>
41   *                                     + (    6 &theta; - 4 &theta;<sup>2</sup>) (y'<sub>2</sub> + y'<sub>3</sub>)
42   *                                     + (   -3 &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
43   *                                    ]
44   *   </li>
45   *   <li>Using reference point at step end:<br>
46   *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
47   *                    + (1 - &theta;) (h/6) [ (-4 &theta;^2 + 5 &theta; - 1) y'<sub>1</sub>
48   *                                          +(4 &theta;^2 - 2 &theta; - 2) (y'<sub>2</sub> + y'<sub>3</sub>)
49   *                                          -(4 &theta;^2 +   &theta; + 1) y'<sub>4</sub>
50   *                                        ]
51   *   </li>
52   * </ul>
53   *
54   * <p>where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
55   * evaluations of the derivatives already computed during the
56   * step.</p>
57   *
58   * @see ClassicalRungeKuttaFieldIntegrator
59   * @param <T> the type of the field elements
60   */
61  
62  class ClassicalRungeKuttaFieldStateInterpolator<T extends CalculusFieldElement<T>>
63      extends RungeKuttaFieldStateInterpolator<T> {
64  
65      /** Simple constructor.
66       * @param field field to which the time and state vector elements belong
67       * @param forward integration direction indicator
68       * @param yDotK slopes at the intermediate points
69       * @param globalPreviousState start of the global step
70       * @param globalCurrentState end of the global step
71       * @param softPreviousState start of the restricted step
72       * @param softCurrentState end of the restricted step
73       * @param mapper equations mapper for the all equations
74       */
75      ClassicalRungeKuttaFieldStateInterpolator(final Field<T> field, final boolean forward,
76                                                final T[][] yDotK,
77                                                final FieldODEStateAndDerivative<T> globalPreviousState,
78                                                final FieldODEStateAndDerivative<T> globalCurrentState,
79                                                final FieldODEStateAndDerivative<T> softPreviousState,
80                                                final FieldODEStateAndDerivative<T> softCurrentState,
81                                                final FieldEquationsMapper<T> mapper) {
82          super(field, forward, yDotK,
83                globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
84                mapper);
85      }
86  
87      /** {@inheritDoc} */
88      @Override
89      protected ClassicalRungeKuttaFieldStateInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
90                                                                    final FieldODEStateAndDerivative<T> newGlobalPreviousState,
91                                                                    final FieldODEStateAndDerivative<T> newGlobalCurrentState,
92                                                                    final FieldODEStateAndDerivative<T> newSoftPreviousState,
93                                                                    final FieldODEStateAndDerivative<T> newSoftCurrentState,
94                                                                    final FieldEquationsMapper<T> newMapper) {
95          return new ClassicalRungeKuttaFieldStateInterpolator<T>(newField, newForward, newYDotK,
96                                                                  newGlobalPreviousState, newGlobalCurrentState,
97                                                                  newSoftPreviousState, newSoftCurrentState,
98                                                                  newMapper);
99      }
100 
101     /** {@inheritDoc} */
102     @SuppressWarnings("unchecked")
103     @Override
104     protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
105                                                                                    final T time, final T theta,
106                                                                                    final T thetaH, final T oneMinusThetaH) {
107 
108         final T one                       = time.getField().getOne();
109         final T oneMinusTheta             = one.subtract(theta);
110         final T oneMinus2Theta            = one.subtract(theta.multiply(2));
111         final T coeffDot1                 = oneMinusTheta.multiply(oneMinus2Theta);
112         final T coeffDot23                = theta.multiply(oneMinusTheta).multiply(2);
113         final T coeffDot4                 = theta.multiply(oneMinus2Theta).negate();
114         final T[] interpolatedState;
115         final T[] interpolatedDerivatives;
116 
117         if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
118             final T fourTheta2      = theta.multiply(theta).multiply(4);
119             final T s               = thetaH.divide(6.0);
120             final T coeff1          = s.multiply(fourTheta2.subtract(theta.multiply(9)).add(6));
121             final T coeff23         = s.multiply(theta.multiply(6).subtract(fourTheta2));
122             final T coeff4          = s.multiply(fourTheta2.subtract(theta.multiply(3)));
123             interpolatedState       = previousStateLinearCombination(coeff1, coeff23, coeff23, coeff4);
124             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4);
125         } else {
126             final T fourTheta       = theta.multiply(4);
127             final T s               = oneMinusThetaH.divide(6);
128             final T coeff1          = s.multiply(theta.multiply(fourTheta.negate().add(5)).subtract(1));
129             final T coeff23         = s.multiply(theta.multiply(fourTheta.subtract(2)).subtract(2));
130             final T coeff4          = s.multiply(theta.multiply(fourTheta.negate().subtract(1)).subtract(1));
131             interpolatedState       = currentStateLinearCombination(coeff1, coeff23, coeff23, coeff4);
132             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4);
133         }
134 
135         return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
136 
137     }
138 
139 }