1 /* 2 * Licensed to the Hipparchus project under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package org.hipparchus.ode.nonstiff; 19 20 import java.util.Arrays; 21 import java.util.HashMap; 22 import java.util.Map; 23 24 import org.hipparchus.fraction.BigFraction; 25 import org.hipparchus.linear.Array2DRowFieldMatrix; 26 import org.hipparchus.linear.Array2DRowRealMatrix; 27 import org.hipparchus.linear.ArrayFieldVector; 28 import org.hipparchus.linear.FieldDecompositionSolver; 29 import org.hipparchus.linear.FieldLUDecomposition; 30 import org.hipparchus.linear.FieldMatrix; 31 import org.hipparchus.linear.MatrixUtils; 32 import org.hipparchus.linear.QRDecomposition; 33 import org.hipparchus.linear.RealMatrix; 34 35 /** Transformer to Nordsieck vectors for Adams integrators. 36 * <p>This class is used by {@link AdamsBashforthIntegrator Adams-Bashforth} and 37 * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between 38 * classical representation with several previous first derivatives and Nordsieck 39 * representation with higher order scaled derivatives.</p> 40 * 41 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as: 42 * \[ 43 * \left\{\begin{align} 44 * s_1(n) &= h y'_n \text{ for first derivative}\\ 45 * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\ 46 * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\ 47 * &\cdots\\ 48 * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative} 49 * \end{align}\right. 50 * \]</p> 51 * 52 * <p>With the previous definition, the classical representation of multistep methods 53 * uses first derivatives only, i.e. it handles y<sub>n</sub>, s<sub>1</sub>(n) and 54 * q<sub>n</sub> where q<sub>n</sub> is defined as: 55 * \[ 56 * q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T 57 * \] 58 * (we omit the k index in the notation for clarity).</p> 59 * 60 * <p>Another possible representation uses the Nordsieck vector with 61 * higher degrees scaled derivatives all taken at the same step, i.e it handles y<sub>n</sub>, 62 * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as: 63 * \[ 64 * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T 65 * \] 66 * (here again we omit the k index in the notation for clarity) 67 * </p> 68 * 69 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be 70 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact 71 * for degree k polynomials. 72 * \[ 73 * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n) 74 * \] 75 * The previous formula can be used with several values for i to compute the transform between 76 * classical representation and Nordsieck vector at step end. The transform between r<sub>n</sub> 77 * and q<sub>n</sub> resulting from the Taylor series formulas above is: 78 * \[ 79 * q_n = s_1(n) u + P r_n 80 * \] 81 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built 82 * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being 83 * the column number starting from 1: 84 * \[ 85 * P=\begin{bmatrix} 86 * -2 & 3 & -4 & 5 & \ldots \\ 87 * -4 & 12 & -32 & 80 & \ldots \\ 88 * -6 & 27 & -108 & 405 & \ldots \\ 89 * -8 & 48 & -256 & 1280 & \ldots \\ 90 * & & \ldots\\ 91 * \end{bmatrix} 92 * \] 93 * 94 * <p>Changing -i into +i in the formula above can be used to compute a similar transform between 95 * classical representation and Nordsieck vector at step start. The resulting matrix is simply 96 * the absolute value of matrix P.</p> 97 * 98 * <p>For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector 99 * at step n+1 is computed from the Nordsieck vector at step n as follows: 100 * <ul> 101 * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> 102 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> 103 * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> 104 * </ul> 105 * <p>where A is a rows shifting matrix (the lower left part is an identity matrix):</p> 106 * <pre> 107 * [ 0 0 ... 0 0 | 0 ] 108 * [ ---------------+---] 109 * [ 1 0 ... 0 0 | 0 ] 110 * A = [ 0 1 ... 0 0 | 0 ] 111 * [ ... | 0 ] 112 * [ 0 0 ... 1 0 | 0 ] 113 * [ 0 0 ... 0 1 | 0 ] 114 * </pre> 115 * 116 * <p>For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector 117 * at step n+1 is computed from the Nordsieck vector at step n as follows: 118 * <ul> 119 * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> 120 * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li> 121 * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> 122 * </ul> 123 * From this predicted vector, the corrected vector is computed as follows: 124 * <ul> 125 * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub></li> 126 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> 127 * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li> 128 * </ul> 129 * <p>where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the 130 * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub> 131 * represent the corrected states.</p> 132 * 133 * <p>We observe that both methods use similar update formulas. In both cases a P<sup>-1</sup>u 134 * vector and a P<sup>-1</sup> A P matrix are used that do not depend on the state, 135 * they only depend on k. This class handles these transformations.</p> 136 * 137 */ 138 public class AdamsNordsieckTransformer { 139 140 /** Cache for already computed coefficients. */ 141 private static final Map<Integer, AdamsNordsieckTransformer> CACHE = new HashMap<>(); 142 143 /** Update matrix for the higher order derivatives h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ... */ 144 private final Array2DRowRealMatrix update; 145 146 /** Update coefficients of the higher order derivatives wrt y'. */ 147 private final double[] c1; 148 149 /** Simple constructor. 150 * @param n number of steps of the multistep method 151 * (excluding the one being computed) 152 */ 153 private AdamsNordsieckTransformer(final int n) { 154 155 final int rows = n - 1; 156 157 // compute exact coefficients 158 FieldMatrix<BigFraction> bigP = buildP(rows); 159 FieldDecompositionSolver<BigFraction> pSolver = 160 new FieldLUDecomposition<BigFraction>(bigP).getSolver(); 161 162 BigFraction[] u = new BigFraction[rows]; 163 Arrays.fill(u, BigFraction.ONE); 164 BigFraction[] bigC1 = pSolver.solve(new ArrayFieldVector<BigFraction>(u, false)).toArray(); 165 166 // update coefficients are computed by combining transform from 167 // Nordsieck to multistep, then shifting rows to represent step advance 168 // then applying inverse transform 169 BigFraction[][] shiftedP = bigP.getData(); 170 for (int i = shiftedP.length - 1; i > 0; --i) { 171 // shift rows 172 shiftedP[i] = shiftedP[i - 1]; 173 } 174 shiftedP[0] = new BigFraction[rows]; 175 Arrays.fill(shiftedP[0], BigFraction.ZERO); 176 FieldMatrix<BigFraction> bigMSupdate = 177 pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false)); 178 179 // convert coefficients to double 180 update = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate); 181 c1 = new double[rows]; 182 for (int i = 0; i < rows; ++i) { 183 c1[i] = bigC1[i].doubleValue(); 184 } 185 186 } 187 188 /** Get the Nordsieck transformer for a given number of steps. 189 * @param nSteps number of steps of the multistep method 190 * (excluding the one being computed) 191 * @return Nordsieck transformer for the specified number of steps 192 */ 193 public static AdamsNordsieckTransformer getInstance(final int nSteps) { // NOPMD - PMD false positive 194 synchronized(CACHE) { 195 AdamsNordsieckTransformer t = CACHE.get(nSteps); 196 if (t == null) { 197 t = new AdamsNordsieckTransformer(nSteps); 198 CACHE.put(nSteps, t); 199 } 200 return t; 201 } 202 } 203 204 /** Build the P matrix. 205 * <p>The P matrix general terms are shifted \((j+1) (-i)^j\) terms 206 * with i being the row number starting from 1 and j being the column 207 * number starting from 1: 208 * <pre> 209 * [ -2 3 -4 5 ... ] 210 * [ -4 12 -32 80 ... ] 211 * P = [ -6 27 -108 405 ... ] 212 * [ -8 48 -256 1280 ... ] 213 * [ ... ] 214 * </pre></p> 215 * @param rows number of rows of the matrix 216 * @return P matrix 217 */ 218 private FieldMatrix<BigFraction> buildP(final int rows) { 219 220 final BigFraction[][] pData = new BigFraction[rows][rows]; 221 222 for (int i = 1; i <= pData.length; ++i) { 223 // build the P matrix elements from Taylor series formulas 224 final BigFraction[] pI = pData[i - 1]; 225 final int factor = -i; 226 int aj = factor; 227 for (int j = 1; j <= pI.length; ++j) { 228 pI[j - 1] = new BigFraction(aj * (j + 1)); 229 aj *= factor; 230 } 231 } 232 233 return new Array2DRowFieldMatrix<BigFraction>(pData, false); 234 235 } 236 237 /** Initialize the high order scaled derivatives at step start. 238 * @param h step size to use for scaling 239 * @param t first steps times 240 * @param y first steps states 241 * @param yDot first steps derivatives 242 * @return Nordieck vector at start of first step (h<sup>2</sup>/2 y''<sub>n</sub>, 243 * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>) 244 */ 245 246 public Array2DRowRealMatrix initializeHighOrderDerivatives(final double h, final double[] t, 247 final double[][] y, 248 final double[][] yDot) { 249 250 // using Taylor series with di = ti - t0, we get: 251 // y(ti) - y(t0) - di y'(t0) = di^2 / h^2 s2 + ... + di^k / h^k sk + O(h^k) 252 // y'(ti) - y'(t0) = 2 di / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1)) 253 // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear 254 // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond 255 // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder. 256 // The goal is to have s2 to sk as accurate as possible considering the fact the sum is 257 // truncated and we don't want the error terms to be included in s2 ... sk, so we need 258 // to solve also for the remainder 259 final double[][] a = new double[c1.length + 1][c1.length + 1]; 260 final double[][] b = new double[c1.length + 1][y[0].length]; 261 final double[] y0 = y[0]; 262 final double[] yDot0 = yDot[0]; 263 for (int i = 1; i < y.length; ++i) { 264 265 final double di = t[i] - t[0]; 266 final double ratio = di / h; 267 double dikM1Ohk = 1 / h; 268 269 // linear coefficients of equations 270 // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0) 271 final double[] aI = a[2 * i - 2]; 272 final double[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null; 273 for (int j = 0; j < aI.length; ++j) { 274 dikM1Ohk *= ratio; 275 aI[j] = di * dikM1Ohk; 276 if (aDotI != null) { 277 aDotI[j] = (j + 2) * dikM1Ohk; 278 } 279 } 280 281 // expected value of the previous equations 282 final double[] yI = y[i]; 283 final double[] yDotI = yDot[i]; 284 final double[] bI = b[2 * i - 2]; 285 final double[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null; 286 for (int j = 0; j < yI.length; ++j) { 287 bI[j] = yI[j] - y0[j] - di * yDot0[j]; 288 if (bDotI != null) { 289 bDotI[j] = yDotI[j] - yDot0[j]; 290 } 291 } 292 293 } 294 295 // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk], 296 // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion 297 final QRDecomposition decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false)); 298 final RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false)); 299 300 // extract just the Nordsieck vector [s2 ... sk] 301 final Array2DRowRealMatrix truncatedX = new Array2DRowRealMatrix(x.getRowDimension() - 1, x.getColumnDimension()); 302 for (int i = 0; i < truncatedX.getRowDimension(); ++i) { 303 for (int j = 0; j < truncatedX.getColumnDimension(); ++j) { 304 truncatedX.setEntry(i, j, x.getEntry(i, j)); 305 } 306 } 307 return truncatedX; 308 309 } 310 311 /** Update the high order scaled derivatives for Adams integrators (phase 1). 312 * <p>The complete update of high order derivatives has a form similar to: 313 * \[ 314 * r_{n+1} = (s_1(n) - s_1(n+1)) P^{-1} u + P^{-1} A P r_n 315 * \] 316 * this method computes the P<sup>-1</sup> A P r<sub>n</sub> part.</p> 317 * @param highOrder high order scaled derivatives 318 * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k)) 319 * @return updated high order derivatives 320 * @see #updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix) 321 */ 322 public Array2DRowRealMatrix updateHighOrderDerivativesPhase1(final Array2DRowRealMatrix highOrder) { 323 return update.multiply(highOrder); 324 } 325 326 /** Update the high order scaled derivatives Adams integrators (phase 2). 327 * <p>The complete update of high order derivatives has a form similar to: 328 * \[ 329 * r_{n+1} = (s_1(n) - s_1(n+1)) P^{-1} u + P^{-1} A P r_n 330 * \] 331 * this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.</p> 332 * <p>Phase 1 of the update must already have been performed.</p> 333 * @param start first order scaled derivatives at step start 334 * @param end first order scaled derivatives at step end 335 * @param highOrder high order scaled derivatives, will be modified 336 * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k)) 337 * @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix) 338 */ 339 public void updateHighOrderDerivativesPhase2(final double[] start, 340 final double[] end, 341 final Array2DRowRealMatrix highOrder) { 342 final double[][] data = highOrder.getDataRef(); 343 for (int i = 0; i < data.length; ++i) { 344 final double[] dataI = data[i]; 345 final double c1I = c1[i]; 346 for (int j = 0; j < dataI.length; ++j) { 347 dataI[j] += c1I * (start[j] - end[j]); 348 } 349 } 350 } 351 352 }