1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22
23 package org.hipparchus.ode.nonstiff;
24
25 import java.util.Arrays;
26
27 import org.hipparchus.Field;
28 import org.hipparchus.CalculusFieldElement;
29 import org.hipparchus.exception.MathIllegalArgumentException;
30 import org.hipparchus.exception.MathIllegalStateException;
31 import org.hipparchus.linear.Array2DRowFieldMatrix;
32 import org.hipparchus.linear.FieldMatrix;
33 import org.hipparchus.linear.FieldMatrixPreservingVisitor;
34 import org.hipparchus.ode.FieldEquationsMapper;
35 import org.hipparchus.ode.FieldODEStateAndDerivative;
36 import org.hipparchus.ode.LocalizedODEFormats;
37 import org.hipparchus.ode.nonstiff.interpolators.AdamsFieldStateInterpolator;
38 import org.hipparchus.util.MathArrays;
39 import org.hipparchus.util.MathUtils;
40
41
42 /**
43 * This class implements implicit Adams-Moulton integrators for Ordinary
44 * Differential Equations.
45 *
46 * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
47 * multistep ODE solvers. This implementation is a variation of the classical
48 * one: it uses adaptive stepsize to implement error control, whereas
49 * classical implementations are fixed step size. The value of state vector
50 * at step n+1 is a simple combination of the value at step n and of the
51 * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
52 * compute y<sub>n+1</sub>, another method must be used to compute a first
53 * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
54 * a final estimate of y<sub>n+1</sub> using the following formulas. Depending
55 * on the number k of previous steps one wants to use for computing the next
56 * value, different formulas are available for the final estimate:</p>
57 * <ul>
58 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
59 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
60 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
61 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
62 * <li>...</li>
63 * </ul>
64 *
65 * <p>A k-steps Adams-Moulton method is of order k+1.</p>
66 *
67 * <p> There must be sufficient time for the {@link #setStarterIntegrator(org.hipparchus.ode.FieldODEIntegrator)
68 * starter integrator} to take several steps between the the last reset event, and the end
69 * of integration, otherwise an exception may be thrown during integration. The user can
70 * adjust the end date of integration, or the step size of the starter integrator to
71 * ensure a sufficient number of steps can be completed before the end of integration.
72 * </p>
73 *
74 * <p><strong>Implementation details</strong></p>
75 *
76 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
77 * \[
78 * \left\{\begin{align}
79 * s_1(n) &= h y'_n \text{ for first derivative}\\
80 * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\
81 * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\
82 * &\cdots\\
83 * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative}
84 * \end{align}\right.
85 * \]</p>
86 *
87 * <p>The definitions above use the classical representation with several previous first
88 * derivatives. Lets define
89 * \[
90 * q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T
91 * \]
92 * (we omit the k index in the notation for clarity). With these definitions,
93 * Adams-Moulton methods can be written:</p>
94 * <ul>
95 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
96 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
97 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
98 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
99 * <li>...</li>
100 * </ul>
101 *
102 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
103 * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
104 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
105 * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
106 * \[
107 * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T
108 * \]
109 * (here again we omit the k index in the notation for clarity)
110 * </p>
111 *
112 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
113 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
114 * for degree k polynomials.
115 * \[
116 * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n)
117 * \]
118 * The previous formula can be used with several values for i to compute the transform between
119 * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
120 * and q<sub>n</sub> resulting from the Taylor series formulas above is:
121 * \[
122 * q_n = s_1(n) u + P r_n
123 * \]
124 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built
125 * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being
126 * the column number starting from 1:
127 * \[
128 * P=\begin{bmatrix}
129 * -2 & 3 & -4 & 5 & \ldots \\
130 * -4 & 12 & -32 & 80 & \ldots \\
131 * -6 & 27 & -108 & 405 & \ldots \\
132 * -8 & 48 & -256 & 1280 & \ldots \\
133 * & & \ldots\\
134 * \end{bmatrix}
135 * \]
136 *
137 * <p>Using the Nordsieck vector has several advantages:</p>
138 * <ul>
139 * <li>it greatly simplifies step interpolation as the interpolator mainly applies
140 * Taylor series formulas,</li>
141 * <li>it simplifies step changes that occur when discrete events that truncate
142 * the step are triggered,</li>
143 * <li>it allows to extend the methods in order to support adaptive stepsize.</li>
144 * </ul>
145 *
146 * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
147 * n as follows:
148 * <ul>
149 * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
150 * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
151 * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
152 * </ul>
153 * where A is a rows shifting matrix (the lower left part is an identity matrix):
154 * <pre>
155 * [ 0 0 ... 0 0 | 0 ]
156 * [ ---------------+---]
157 * [ 1 0 ... 0 0 | 0 ]
158 * A = [ 0 1 ... 0 0 | 0 ]
159 * [ ... | 0 ]
160 * [ 0 0 ... 1 0 | 0 ]
161 * [ 0 0 ... 0 1 | 0 ]
162 * </pre>
163 * From this predicted vector, the corrected vector is computed as follows:
164 * <ul>
165 * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub></li>
166 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
167 * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
168 * </ul>
169 * <p>where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
170 * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
171 * represent the corrected states.</p>
172 *
173 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
174 * they only depend on k and therefore are precomputed once for all.</p>
175 *
176 * @param <T> the type of the field elements
177 */
178 public class AdamsMoultonFieldIntegrator<T extends CalculusFieldElement<T>> extends AdamsFieldIntegrator<T> {
179
180 /** Name of integration scheme. */
181 public static final String METHOD_NAME = AdamsMoultonIntegrator.METHOD_NAME;
182
183 /**
184 * Build an Adams-Moulton integrator with the given order and error control parameters.
185 * @param field field to which the time and state vector elements belong
186 * @param nSteps number of steps of the method excluding the one being computed
187 * @param minStep minimal step (sign is irrelevant, regardless of
188 * integration direction, forward or backward), the last step can
189 * be smaller than this
190 * @param maxStep maximal step (sign is irrelevant, regardless of
191 * integration direction, forward or backward), the last step can
192 * be smaller than this
193 * @param scalAbsoluteTolerance allowed absolute error
194 * @param scalRelativeTolerance allowed relative error
195 * @exception MathIllegalArgumentException if order is 1 or less
196 */
197 public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps,
198 final double minStep, final double maxStep,
199 final double scalAbsoluteTolerance,
200 final double scalRelativeTolerance)
201 throws MathIllegalArgumentException {
202 super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
203 scalAbsoluteTolerance, scalRelativeTolerance);
204 }
205
206 /**
207 * Build an Adams-Moulton integrator with the given order and error control parameters.
208 * @param field field to which the time and state vector elements belong
209 * @param nSteps number of steps of the method excluding the one being computed
210 * @param minStep minimal step (sign is irrelevant, regardless of
211 * integration direction, forward or backward), the last step can
212 * be smaller than this
213 * @param maxStep maximal step (sign is irrelevant, regardless of
214 * integration direction, forward or backward), the last step can
215 * be smaller than this
216 * @param vecAbsoluteTolerance allowed absolute error
217 * @param vecRelativeTolerance allowed relative error
218 * @exception IllegalArgumentException if order is 1 or less
219 */
220 public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps,
221 final double minStep, final double maxStep,
222 final double[] vecAbsoluteTolerance,
223 final double[] vecRelativeTolerance)
224 throws IllegalArgumentException {
225 super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
226 vecAbsoluteTolerance, vecRelativeTolerance);
227 }
228
229 /** {@inheritDoc} */
230 @Override
231 protected double errorEstimation(final T[] previousState, final T predictedTime,
232 final T[] predictedState, final T[] predictedScaled,
233 final FieldMatrix<T> predictedNordsieck) {
234 final double error = predictedNordsieck.walkInOptimizedOrder(new Corrector(previousState, predictedScaled, predictedState)).getReal();
235 if (Double.isNaN(error)) {
236 throw new MathIllegalStateException(LocalizedODEFormats.NAN_APPEARING_DURING_INTEGRATION,
237 predictedTime.getReal());
238 }
239 return error;
240 }
241
242 /** {@inheritDoc} */
243 @Override
244 protected AdamsFieldStateInterpolator<T> finalizeStep(final T stepSize, final T[] predictedY,
245 final T[] predictedScaled, final Array2DRowFieldMatrix<T> predictedNordsieck,
246 final boolean isForward,
247 final FieldODEStateAndDerivative<T> globalPreviousState,
248 final FieldODEStateAndDerivative<T> globalCurrentState,
249 final FieldEquationsMapper<T> equationsMapper) {
250
251 final T[] correctedYDot = computeDerivatives(globalCurrentState.getTime(), predictedY);
252
253 // update Nordsieck vector
254 final T[] correctedScaled = MathArrays.buildArray(getField(), predictedY.length);
255 for (int j = 0; j < correctedScaled.length; ++j) {
256 correctedScaled[j] = getStepSize().multiply(correctedYDot[j]);
257 }
258 updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, predictedNordsieck);
259
260 final FieldODEStateAndDerivative<T> updatedStepEnd =
261 equationsMapper.mapStateAndDerivative(globalCurrentState.getTime(), predictedY, correctedYDot);
262 return new AdamsFieldStateInterpolator<>(getStepSize(), updatedStepEnd,
263 correctedScaled, predictedNordsieck, isForward,
264 getStepStart(), updatedStepEnd,
265 equationsMapper);
266
267 }
268
269 /** Corrector for current state in Adams-Moulton method.
270 * <p>
271 * This visitor implements the Taylor series formula:
272 * <pre>
273 * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub>
274 * </pre>
275 * </p>
276 */
277 private class Corrector implements FieldMatrixPreservingVisitor<T> {
278
279 /** Previous state. */
280 private final T[] previous;
281
282 /** Current scaled first derivative. */
283 private final T[] scaled;
284
285 /** Current state before correction. */
286 private final T[] before;
287
288 /** Current state after correction. */
289 private final T[] after;
290
291 /** Simple constructor.
292 * <p>
293 * All arrays will be stored by reference to caller arrays.
294 * </p>
295 * @param previous previous state
296 * @param scaled current scaled first derivative
297 * @param state state to correct (will be overwritten after visit)
298 */
299 Corrector(final T[] previous, final T[] scaled, final T[] state) {
300 this.previous = previous; // NOPMD - array reference storage is intentional and documented here
301 this.scaled = scaled; // NOPMD - array reference storage is intentional and documented here
302 this.after = state; // NOPMD - array reference storage is intentional and documented here
303 this.before = state.clone();
304 }
305
306 /** {@inheritDoc} */
307 @Override
308 public void start(int rows, int columns,
309 int startRow, int endRow, int startColumn, int endColumn) {
310 Arrays.fill(after, getField().getZero());
311 }
312
313 /** {@inheritDoc} */
314 @Override
315 public void visit(int row, int column, T value) {
316 if ((row & 0x1) == 0) {
317 after[column] = after[column].subtract(value);
318 } else {
319 after[column] = after[column].add(value);
320 }
321 }
322
323 /**
324 * End visiting the Nordsieck vector.
325 * <p>The correction is used to control stepsize. So its amplitude is
326 * considered to be an error, which must be normalized according to
327 * error control settings. If the normalized value is greater than 1,
328 * the correction was too large and the step must be rejected.</p>
329 * @return the normalized correction, if greater than 1, the step
330 * must be rejected
331 */
332 @Override
333 public T end() {
334
335 final StepsizeHelper helper = getStepSizeHelper();
336 T error = getField().getZero();
337 for (int i = 0; i < after.length; ++i) {
338 after[i] = after[i].add(previous[i].add(scaled[i]));
339 if (i < helper.getMainSetDimension()) {
340 final T tol = helper.getTolerance(i, MathUtils.max(previous[i].abs(), after[i].abs()));
341 final T ratio = after[i].subtract(before[i]).divide(tol); // (corrected-predicted)/tol
342 error = error.add(ratio.multiply(ratio));
343 }
344 }
345
346 return error.divide(helper.getMainSetDimension()).sqrt();
347
348 }
349 }
350
351 }