1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 23 package org.hipparchus.ode.nonstiff; 24 25 import org.hipparchus.Field; 26 import org.hipparchus.CalculusFieldElement; 27 import org.hipparchus.exception.MathIllegalArgumentException; 28 import org.hipparchus.linear.Array2DRowFieldMatrix; 29 import org.hipparchus.linear.FieldMatrix; 30 import org.hipparchus.ode.FieldEquationsMapper; 31 import org.hipparchus.ode.FieldODEStateAndDerivative; 32 import org.hipparchus.util.FastMath; 33 34 35 /** 36 * This class implements explicit Adams-Bashforth integrators for Ordinary 37 * Differential Equations. 38 * 39 * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit 40 * multistep ODE solvers. This implementation is a variation of the classical 41 * one: it uses adaptive stepsize to implement error control, whereas 42 * classical implementations are fixed step size. The value of state vector 43 * at step n+1 is a simple combination of the value at step n and of the 44 * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous 45 * steps one wants to use for computing the next value, different formulas 46 * are available:</p> 47 * <ul> 48 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li> 49 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li> 50 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li> 51 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li> 52 * <li>...</li> 53 * </ul> 54 * 55 * <p>A k-steps Adams-Bashforth method is of order k.</p> 56 * 57 * <p> There must be sufficient time for the {@link #setStarterIntegrator(org.hipparchus.ode.FieldODEIntegrator) 58 * starter integrator} to take several steps between the the last reset event, and the end 59 * of integration, otherwise an exception may be thrown during integration. The user can 60 * adjust the end date of integration, or the step size of the starter integrator to 61 * ensure a sufficient number of steps can be completed before the end of integration. 62 * </p> 63 * 64 * <p><strong>Implementation details</strong></p> 65 * 66 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as: 67 * \[ 68 * \left\{\begin{align} 69 * s_1(n) &= h y'_n \text{ for first derivative}\\ 70 * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\ 71 * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\ 72 * &\cdots\\ 73 * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative} 74 * \end{align}\right. 75 * \]</p> 76 * 77 * <p>The definitions above use the classical representation with several previous first 78 * derivatives. Lets define 79 * \[ 80 * q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T 81 * \] 82 * (we omit the k index in the notation for clarity). With these definitions, 83 * Adams-Bashforth methods can be written: 84 * \[ 85 * \left\{\begin{align} 86 * k = 1: & y_{n+1} = y_n + s_1(n) \\ 87 * k = 2: & y_{n+1} = y_n + \frac{3}{2} s_1(n) + [ \frac{-1}{2} ] q_n \\ 88 * k = 3: & y_{n+1} = y_n + \frac{23}{12} s_1(n) + [ \frac{-16}{12} \frac{5}{12} ] q_n \\ 89 * k = 4: & y_{n+1} = y_n + \frac{55}{24} s_1(n) + [ \frac{-59}{24} \frac{37}{24} \frac{-9}{24} ] q_n \\ 90 * & \cdots 91 * \end{align}\right. 92 * \] 93 * 94 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>, 95 * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with 96 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n) 97 * and r<sub>n</sub>) where r<sub>n</sub> is defined as: 98 * \[ 99 * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T 100 * \] 101 * (here again we omit the k index in the notation for clarity) 102 * </p> 103 * 104 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be 105 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact 106 * for degree k polynomials. 107 * \[ 108 * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n) 109 * \] 110 * The previous formula can be used with several values for i to compute the transform between 111 * classical representation and Nordsieck vector. The transform between r<sub>n</sub> 112 * and q<sub>n</sub> resulting from the Taylor series formulas above is: 113 * \[ 114 * q_n = s_1(n) u + P r_n 115 * \] 116 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built 117 * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being 118 * the column number starting from 1: 119 * \[ 120 * P=\begin{bmatrix} 121 * -2 & 3 & -4 & 5 & \ldots \\ 122 * -4 & 12 & -32 & 80 & \ldots \\ 123 * -6 & 27 & -108 & 405 & \ldots \\ 124 * -8 & 48 & -256 & 1280 & \ldots \\ 125 * & & \ldots\\ 126 * \end{bmatrix} 127 * \] 128 * 129 * <p>Using the Nordsieck vector has several advantages:</p> 130 * <ul> 131 * <li>it greatly simplifies step interpolation as the interpolator mainly applies 132 * Taylor series formulas,</li> 133 * <li>it simplifies step changes that occur when discrete events that truncate 134 * the step are triggered,</li> 135 * <li>it allows to extend the methods in order to support adaptive stepsize.</li> 136 * </ul> 137 * 138 * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows: 139 * <ul> 140 * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> 141 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> 142 * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> 143 * </ul> 144 * <p>where A is a rows shifting matrix (the lower left part is an identity matrix):</p> 145 * <pre> 146 * [ 0 0 ... 0 0 | 0 ] 147 * [ ---------------+---] 148 * [ 1 0 ... 0 0 | 0 ] 149 * A = [ 0 1 ... 0 0 | 0 ] 150 * [ ... | 0 ] 151 * [ 0 0 ... 1 0 | 0 ] 152 * [ 0 0 ... 0 1 | 0 ] 153 * </pre> 154 * 155 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state, 156 * they only depend on k and therefore are precomputed once for all.</p> 157 * 158 * @param <T> the type of the field elements 159 */ 160 public class AdamsBashforthFieldIntegrator<T extends CalculusFieldElement<T>> extends AdamsFieldIntegrator<T> { 161 162 /** Name of integration scheme. */ 163 public static final String METHOD_NAME = AdamsBashforthIntegrator.METHOD_NAME; 164 165 /** 166 * Build an Adams-Bashforth integrator with the given order and step control parameters. 167 * @param field field to which the time and state vector elements belong 168 * @param nSteps number of steps of the method excluding the one being computed 169 * @param minStep minimal step (sign is irrelevant, regardless of 170 * integration direction, forward or backward), the last step can 171 * be smaller than this 172 * @param maxStep maximal step (sign is irrelevant, regardless of 173 * integration direction, forward or backward), the last step can 174 * be smaller than this 175 * @param scalAbsoluteTolerance allowed absolute error 176 * @param scalRelativeTolerance allowed relative error 177 * @exception MathIllegalArgumentException if order is 1 or less 178 */ 179 public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps, 180 final double minStep, final double maxStep, 181 final double scalAbsoluteTolerance, 182 final double scalRelativeTolerance) 183 throws MathIllegalArgumentException { 184 super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep, 185 scalAbsoluteTolerance, scalRelativeTolerance); 186 } 187 188 /** 189 * Build an Adams-Bashforth integrator with the given order and step control parameters. 190 * @param field field to which the time and state vector elements belong 191 * @param nSteps number of steps of the method excluding the one being computed 192 * @param minStep minimal step (sign is irrelevant, regardless of 193 * integration direction, forward or backward), the last step can 194 * be smaller than this 195 * @param maxStep maximal step (sign is irrelevant, regardless of 196 * integration direction, forward or backward), the last step can 197 * be smaller than this 198 * @param vecAbsoluteTolerance allowed absolute error 199 * @param vecRelativeTolerance allowed relative error 200 * @exception IllegalArgumentException if order is 1 or less 201 */ 202 public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps, 203 final double minStep, final double maxStep, 204 final double[] vecAbsoluteTolerance, 205 final double[] vecRelativeTolerance) 206 throws IllegalArgumentException { 207 super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep, 208 vecAbsoluteTolerance, vecRelativeTolerance); 209 } 210 211 /** {@inheritDoc} */ 212 @Override 213 protected double errorEstimation(final T[] previousState, final T predictedTime, 214 final T[] predictedState, final T[] predictedScaled, 215 final FieldMatrix<T> predictedNordsieck) { 216 217 final StepsizeHelper helper = getStepSizeHelper(); 218 double error = 0; 219 for (int i = 0; i < helper.getMainSetDimension(); ++i) { 220 final double tol = helper.getTolerance(i, FastMath.abs(predictedState[i].getReal())); 221 222 // apply Taylor formula from high order to low order, 223 // for the sake of numerical accuracy 224 double variation = 0; 225 int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1; 226 for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) { 227 variation += sign * predictedNordsieck.getEntry(k, i).getReal(); 228 sign = -sign; 229 } 230 variation -= predictedScaled[i].getReal(); 231 232 final double ratio = (predictedState[i].getReal() - previousState[i].getReal() + variation) / tol; 233 error += ratio * ratio; 234 235 } 236 237 return FastMath.sqrt(error / helper.getMainSetDimension()); 238 239 } 240 241 /** {@inheritDoc} */ 242 @Override 243 protected AdamsFieldStateInterpolator<T> finalizeStep(final T stepSize, final T[] predictedY, 244 final T[] predictedScaled, final Array2DRowFieldMatrix<T> predictedNordsieck, 245 final boolean isForward, 246 final FieldODEStateAndDerivative<T> globalPreviousState, 247 final FieldODEStateAndDerivative<T> globalCurrentState, 248 final FieldEquationsMapper<T> equationsMapper) { 249 return new AdamsFieldStateInterpolator<>(getStepSize(), globalCurrentState, 250 predictedScaled, predictedNordsieck, isForward, 251 getStepStart(), globalCurrentState, equationsMapper); 252 } 253 254 }