1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22
23 package org.hipparchus.ode;
24
25 import org.hipparchus.Field;
26 import org.hipparchus.CalculusFieldElement;
27 import org.hipparchus.exception.MathIllegalArgumentException;
28 import org.hipparchus.exception.MathIllegalStateException;
29 import org.hipparchus.linear.Array2DRowFieldMatrix;
30 import org.hipparchus.ode.nonstiff.AdaptiveStepsizeFieldIntegrator;
31 import org.hipparchus.ode.nonstiff.DormandPrince853FieldIntegrator;
32 import org.hipparchus.ode.sampling.FieldODEStateInterpolator;
33 import org.hipparchus.ode.sampling.FieldODEStepHandler;
34 import org.hipparchus.util.FastMath;
35 import org.hipparchus.util.MathArrays;
36
37 /**
38 * This class is the base class for multistep integrators for Ordinary
39 * Differential Equations.
40 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
41 * \[
42 * \left\{\begin{align}
43 * s_1(n) &= h y'_n \text{ for first derivative}\\
44 * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\
45 * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\
46 * &\cdots\\
47 * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative}
48 * \end{align}\right.
49 * \]</p>
50 * <p>Rather than storing several previous steps separately, this implementation uses
51 * the Nordsieck vector with higher degrees scaled derivatives all taken at the same
52 * step (y<sub>n</sub>, s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
53 * \[
54 * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T
55 * \]
56 * (we omit the k index in the notation for clarity)</p>
57 * <p>
58 * Multistep integrators with Nordsieck representation are highly sensitive to
59 * large step changes because when the step is multiplied by factor a, the
60 * k<sup>th</sup> component of the Nordsieck vector is multiplied by a<sup>k</sup>
61 * and the last components are the least accurate ones. The default max growth
62 * factor is therefore set to a quite low value: 2<sup>1/order</sup>.
63 * </p>
64 *
65 * @see org.hipparchus.ode.nonstiff.AdamsBashforthFieldIntegrator
66 * @see org.hipparchus.ode.nonstiff.AdamsMoultonFieldIntegrator
67 * @param <T> the type of the field elements
68 */
69 public abstract class MultistepFieldIntegrator<T extends CalculusFieldElement<T>>
70 extends AdaptiveStepsizeFieldIntegrator<T> {
71
72 /** First scaled derivative (h y'). */
73 protected T[] scaled;
74
75 /** Nordsieck matrix of the higher scaled derivatives.
76 * <p>(h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ..., h<sup>k</sup>/k! y<sup>(k)</sup>)</p>
77 */
78 protected Array2DRowFieldMatrix<T> nordsieck;
79
80 /** Starter integrator. */
81 private FieldODEIntegrator<T> starter;
82
83 /** Number of steps of the multistep method (excluding the one being computed). */
84 private final int nSteps;
85
86 /** Stepsize control exponent. */
87 private double exp;
88
89 /** Safety factor for stepsize control. */
90 private double safety;
91
92 /** Minimal reduction factor for stepsize control. */
93 private double minReduction;
94
95 /** Maximal growth factor for stepsize control. */
96 private double maxGrowth;
97
98 /**
99 * Build a multistep integrator with the given stepsize bounds.
100 * <p>The default starter integrator is set to the {@link
101 * DormandPrince853FieldIntegrator Dormand-Prince 8(5,3)} integrator with
102 * some defaults settings.</p>
103 * <p>
104 * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
105 * </p>
106 * @param field field to which the time and state vector elements belong
107 * @param name name of the method
108 * @param nSteps number of steps of the multistep method
109 * (excluding the one being computed)
110 * @param order order of the method
111 * @param minStep minimal step (must be positive even for backward
112 * integration), the last step can be smaller than this
113 * @param maxStep maximal step (must be positive even for backward
114 * integration)
115 * @param scalAbsoluteTolerance allowed absolute error
116 * @param scalRelativeTolerance allowed relative error
117 * @exception MathIllegalArgumentException if number of steps is smaller than 2
118 */
119 protected MultistepFieldIntegrator(final Field<T> field, final String name,
120 final int nSteps, final int order,
121 final double minStep, final double maxStep,
122 final double scalAbsoluteTolerance,
123 final double scalRelativeTolerance)
124 throws MathIllegalArgumentException {
125
126 super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
127
128 if (nSteps < 2) {
129 throw new MathIllegalArgumentException(LocalizedODEFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
130 nSteps, 2, true);
131 }
132
133 starter = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep,
134 scalAbsoluteTolerance,
135 scalRelativeTolerance);
136 this.nSteps = nSteps;
137
138 exp = -1.0 / order;
139
140 // set the default values of the algorithm control parameters
141 setSafety(0.9);
142 setMinReduction(0.2);
143 setMaxGrowth(FastMath.pow(2.0, -exp));
144
145 }
146
147 /**
148 * Build a multistep integrator with the given stepsize bounds.
149 * <p>The default starter integrator is set to the {@link
150 * DormandPrince853FieldIntegrator Dormand-Prince 8(5,3)} integrator with
151 * some defaults settings.</p>
152 * <p>
153 * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
154 * </p>
155 * @param field field to which the time and state vector elements belong
156 * @param name name of the method
157 * @param nSteps number of steps of the multistep method
158 * (excluding the one being computed)
159 * @param order order of the method
160 * @param minStep minimal step (must be positive even for backward
161 * integration), the last step can be smaller than this
162 * @param maxStep maximal step (must be positive even for backward
163 * integration)
164 * @param vecAbsoluteTolerance allowed absolute error
165 * @param vecRelativeTolerance allowed relative error
166 */
167 protected MultistepFieldIntegrator(final Field<T> field, final String name, final int nSteps,
168 final int order,
169 final double minStep, final double maxStep,
170 final double[] vecAbsoluteTolerance,
171 final double[] vecRelativeTolerance) {
172 super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
173
174 if (nSteps < 2) {
175 throw new MathIllegalArgumentException(LocalizedODEFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
176 nSteps, 2, true);
177 }
178
179 starter = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep,
180 vecAbsoluteTolerance,
181 vecRelativeTolerance);
182 this.nSteps = nSteps;
183
184 exp = -1.0 / order;
185
186 // set the default values of the algorithm control parameters
187 setSafety(0.9);
188 setMinReduction(0.2);
189 setMaxGrowth(FastMath.pow(2.0, -exp));
190
191 }
192
193 /**
194 * Get the starter integrator.
195 * @return starter integrator
196 */
197 public FieldODEIntegrator<T> getStarterIntegrator() {
198 return starter;
199 }
200
201 /**
202 * Set the starter integrator.
203 * <p>The various step and event handlers for this starter integrator
204 * will be managed automatically by the multi-step integrator. Any
205 * user configuration for these elements will be cleared before use.</p>
206 * @param starterIntegrator starter integrator
207 */
208 public void setStarterIntegrator(FieldODEIntegrator<T> starterIntegrator) {
209 this.starter = starterIntegrator;
210 }
211
212 /** Start the integration.
213 * <p>This method computes one step using the underlying starter integrator,
214 * and initializes the Nordsieck vector at step start. The starter integrator
215 * purpose is only to establish initial conditions, it does not really change
216 * time by itself. The top level multistep integrator remains in charge of
217 * handling time propagation and events handling as it will starts its own
218 * computation right from the beginning. In a sense, the starter integrator
219 * can be seen as a dummy one and so it will never trigger any user event nor
220 * call any user step handler.</p>
221 * @param equations complete set of differential equations to integrate
222 * @param initialState initial state (time, primary and secondary state vectors)
223 * @param t target time for the integration
224 * (can be set to a value smaller than <code>t0</code> for backward integration)
225 * @exception MathIllegalArgumentException if arrays dimension do not match equations settings
226 * @exception MathIllegalArgumentException if integration step is too small
227 * @exception MathIllegalStateException if the number of functions evaluations is exceeded
228 * @exception MathIllegalArgumentException if the location of an event cannot be bracketed
229 */
230 protected void start(final FieldExpandableODE<T> equations, final FieldODEState<T> initialState, final T t)
231 throws MathIllegalArgumentException, MathIllegalStateException {
232
233 // make sure NO user events nor user step handlers are triggered,
234 // this is the task of the top level integrator, not the task of the starter integrator
235 starter.clearEventDetectors();
236 starter.clearStepHandlers();
237
238 // set up one specific step handler to extract initial Nordsieck vector
239 starter.addStepHandler(new FieldNordsieckInitializer((nSteps + 3) / 2));
240
241 // start integration, expecting a InitializationCompletedMarkerException
242 try {
243
244 starter.integrate(equations, initialState, t);
245
246 // we should not reach this step
247 throw new MathIllegalStateException(LocalizedODEFormats.MULTISTEP_STARTER_STOPPED_EARLY);
248
249 } catch (InitializationCompletedMarkerException icme) { // NOPMD
250 // this is the expected nominal interruption of the start integrator
251
252 // count the evaluations used by the starter
253 getEvaluationsCounter().increment(starter.getEvaluations());
254
255 }
256
257 // remove the specific step handler
258 starter.clearStepHandlers();
259
260 }
261
262 /** Initialize the high order scaled derivatives at step start.
263 * @param h step size to use for scaling
264 * @param t first steps times
265 * @param y first steps states
266 * @param yDot first steps derivatives
267 * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>,
268 * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
269 */
270 protected abstract Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot);
271
272 /** Get the minimal reduction factor for stepsize control.
273 * @return minimal reduction factor
274 */
275 public double getMinReduction() {
276 return minReduction;
277 }
278
279 /** Set the minimal reduction factor for stepsize control.
280 * @param minReduction minimal reduction factor
281 */
282 public void setMinReduction(final double minReduction) {
283 this.minReduction = minReduction;
284 }
285
286 /** Get the maximal growth factor for stepsize control.
287 * @return maximal growth factor
288 */
289 public double getMaxGrowth() {
290 return maxGrowth;
291 }
292
293 /** Set the maximal growth factor for stepsize control.
294 * @param maxGrowth maximal growth factor
295 */
296 public void setMaxGrowth(final double maxGrowth) {
297 this.maxGrowth = maxGrowth;
298 }
299
300 /** Get the safety factor for stepsize control.
301 * @return safety factor
302 */
303 public double getSafety() {
304 return safety;
305 }
306
307 /** Set the safety factor for stepsize control.
308 * @param safety safety factor
309 */
310 public void setSafety(final double safety) {
311 this.safety = safety;
312 }
313
314 /** Get the number of steps of the multistep method (excluding the one being computed).
315 * @return number of steps of the multistep method (excluding the one being computed)
316 */
317 public int getNSteps() {
318 return nSteps;
319 }
320
321 /** Rescale the instance.
322 * <p>Since the scaled and Nordsieck arrays are shared with the caller,
323 * this method has the side effect of rescaling this arrays in the caller too.</p>
324 * @param newStepSize new step size to use in the scaled and Nordsieck arrays
325 */
326 protected void rescale(final T newStepSize) {
327
328 final T ratio = newStepSize.divide(getStepSize());
329 for (int i = 0; i < scaled.length; ++i) {
330 scaled[i] = scaled[i].multiply(ratio);
331 }
332
333 final T[][] nData = nordsieck.getDataRef();
334 T power = ratio;
335 for (T[] nDatum : nData) {
336 power = power.multiply(ratio);
337 final T[] nDataI = nDatum;
338 for (int j = 0; j < nDataI.length; ++j) {
339 nDataI[j] = nDataI[j].multiply(power);
340 }
341 }
342
343 setStepSize(newStepSize);
344
345 }
346
347 /** Compute step grow/shrink factor according to normalized error.
348 * @param error normalized error of the current step
349 * @return grow/shrink factor for next step
350 */
351 protected double computeStepGrowShrinkFactor(final double error) {
352 return FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
353 }
354
355 /** Specialized step handler storing the first step.
356 */
357 private class FieldNordsieckInitializer implements FieldODEStepHandler<T> {
358
359 /** Steps counter. */
360 private int count;
361
362 /** Saved start. */
363 private FieldODEStateAndDerivative<T> savedStart;
364
365 /** First steps times. */
366 private final T[] t;
367
368 /** First steps states. */
369 private final T[][] y;
370
371 /** First steps derivatives. */
372 private final T[][] yDot;
373
374 /** Simple constructor.
375 * @param nbStartPoints number of start points (including the initial point)
376 */
377 FieldNordsieckInitializer(final int nbStartPoints) {
378 this.count = 0;
379 this.t = MathArrays.buildArray(getField(), nbStartPoints);
380 this.y = MathArrays.buildArray(getField(), nbStartPoints, -1);
381 this.yDot = MathArrays.buildArray(getField(), nbStartPoints, -1);
382 }
383
384 /** {@inheritDoc} */
385 @Override
386 public void handleStep(FieldODEStateInterpolator<T> interpolator) {
387
388
389 if (count == 0) {
390 // first step, we need to store also the point at the beginning of the step
391 final FieldODEStateAndDerivative<T> prev = interpolator.getPreviousState();
392 savedStart = prev;
393 t[count] = prev.getTime();
394 y[count] = prev.getCompleteState();
395 yDot[count] = prev.getCompleteDerivative();
396 }
397
398 // store the point at the end of the step
399 ++count;
400 final FieldODEStateAndDerivative<T> curr = interpolator.getCurrentState();
401 t[count] = curr.getTime();
402 y[count] = curr.getCompleteState();
403 yDot[count] = curr.getCompleteDerivative();
404
405 if (count == t.length - 1) {
406
407 // this was the last point we needed, we can compute the derivatives
408 setStepStart(savedStart);
409 final T rawStep = t[t.length - 1].subtract(t[0]).divide(t.length - 1);
410 setStepSize(getStepSizeHelper().filterStep(rawStep, rawStep.getReal() >= 0, true));
411
412 // first scaled derivative
413 scaled = MathArrays.buildArray(getField(), yDot[0].length);
414 for (int j = 0; j < scaled.length; ++j) {
415 scaled[j] = yDot[0][j].multiply(getStepSize());
416 }
417
418 // higher order derivatives
419 nordsieck = initializeHighOrderDerivatives(getStepSize(), t, y, yDot);
420
421 // stop the integrator now that all needed steps have been handled
422 throw new InitializationCompletedMarkerException();
423
424 }
425
426 }
427
428 /** {@inheritDoc} */
429 @Override
430 public void init(final FieldODEStateAndDerivative<T> initialState, T finalTime) {
431 // nothing to do
432 }
433
434 }
435
436 /** Marker exception used ONLY to stop the starter integrator after first step. */
437 private static class InitializationCompletedMarkerException
438 extends RuntimeException {
439
440 /** Serializable version identifier. */
441 private static final long serialVersionUID = -1914085471038046418L;
442
443 /** Simple constructor. */
444 InitializationCompletedMarkerException() {
445 super((Throwable) null);
446 }
447
448 }
449
450 }