1 /*
2 * Licensed to the Hipparchus project under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.hipparchus.ode;
18
19 import java.util.ArrayList;
20 import java.util.List;
21
22 import org.hipparchus.CalculusFieldElement;
23 import org.hipparchus.exception.MathIllegalArgumentException;
24 import org.hipparchus.exception.MathIllegalStateException;
25 import org.hipparchus.util.MathArrays;
26
27
28 /**
29 * This class represents a combined set of first order differential equations,
30 * with at least a primary set of equations expandable by some sets of secondary
31 * equations.
32 * <p>
33 * One typical use case is the computation of the Jacobian matrix for some ODE.
34 * In this case, the primary set of equations corresponds to the raw ODE, and we
35 * add to this set another bunch of secondary equations which represent the Jacobian
36 * matrix of the primary set.
37 * </p>
38 * <p>
39 * We want the integrator to use <em>only</em> the primary set to estimate the
40 * errors and hence the step sizes. It should <em>not</em> use the secondary
41 * equations in this computation. The {@link FieldODEIntegrator integrator} will
42 * be able to know where the primary set ends and so where the secondary sets begin.
43 * </p>
44 *
45 * @see FieldOrdinaryDifferentialEquation
46 * @see FieldSecondaryODE
47 *
48 * @param <T> the type of the field elements
49 */
50
51 public class FieldExpandableODE<T extends CalculusFieldElement<T>> {
52
53 /** Primary differential equation. */
54 private final FieldOrdinaryDifferentialEquation<T> primary;
55
56 /** Components of the expandable ODE. */
57 private List<FieldSecondaryODE<T>> components;
58
59 /** Mapper for all equations. */
60 private FieldEquationsMapper<T> mapper;
61
62 /** Build an expandable set from its primary ODE set.
63 * @param primary the primary set of differential equations to be integrated.
64 */
65 public FieldExpandableODE(final FieldOrdinaryDifferentialEquation<T> primary) {
66 this.primary = primary;
67 this.components = new ArrayList<>();
68 this.mapper = new FieldEquationsMapper<>(null, primary.getDimension());
69 }
70
71 /** Get the primary set of differential equations to be integrated.
72 * @return primary set of differential equations to be integrated
73 * @since 2.2
74 */
75 public FieldOrdinaryDifferentialEquation<T> getPrimary() {
76 return primary;
77 }
78
79 /** Get the mapper for the set of equations.
80 * @return mapper for the set of equations
81 */
82 public FieldEquationsMapper<T> getMapper() {
83 return mapper;
84 }
85
86 /** Add a set of secondary equations to be integrated along with the primary set.
87 * @param secondary secondary equations set
88 * @return index of the secondary equation in the expanded state, to be used
89 * as the parameter to {@link FieldODEState#getSecondaryState(int)} and
90 * {@link FieldODEStateAndDerivative#getSecondaryDerivative(int)} (beware index
91 * 0 corresponds to primary state, secondary states start at 1)
92 */
93 public int addSecondaryEquations(final FieldSecondaryODE<T> secondary) {
94
95 components.add(secondary);
96 mapper = new FieldEquationsMapper<>(mapper, secondary.getDimension());
97
98 return components.size();
99
100 }
101
102 /** Initialize equations at the start of an ODE integration.
103 * @param s0 state at integration start
104 * @param finalTime target time for the integration
105 * @exception MathIllegalStateException if the number of functions evaluations is exceeded
106 * @exception MathIllegalArgumentException if arrays dimensions do not match equations settings
107 */
108 public void init(final FieldODEState<T> s0, final T finalTime) {
109
110 final T t0 = s0.getTime();
111
112 // initialize primary equations
113 final T[] primary0 = s0.getPrimaryState();
114 primary.init(t0, primary0, finalTime);
115
116 // initialize secondary equations
117 for (int index = 1; index < mapper.getNumberOfEquations(); ++index) {
118 final T[] secondary0 = s0.getSecondaryState(index);
119 components.get(index - 1).init(t0, primary0, secondary0, finalTime);
120 }
121
122 }
123
124 /** Get the current time derivative of the complete state vector.
125 * @param t current value of the independent <I>time</I> variable
126 * @param y array containing the current value of the complete state vector
127 * @return time derivative of the complete state vector
128 * @exception MathIllegalStateException if the number of functions evaluations is exceeded
129 * @exception MathIllegalArgumentException if arrays dimensions do not match equations settings
130 */
131 public T[] computeDerivatives(final T t, final T[] y)
132 throws MathIllegalArgumentException, MathIllegalStateException {
133
134 final T[] yDot = MathArrays.buildArray(t.getField(), mapper.getTotalDimension());
135
136 // compute derivatives of the primary equations
137 final T[] primaryState = mapper.extractEquationData(0, y);
138 final T[] primaryStateDot = primary.computeDerivatives(t, primaryState);
139
140 // Add contribution for secondary equations
141 for (int index = 1; index < mapper.getNumberOfEquations(); ++index) {
142 final T[] componentState = mapper.extractEquationData(index, y);
143 final T[] componentStateDot = components.get(index - 1).computeDerivatives(t, primaryState, primaryStateDot,
144 componentState);
145 mapper.insertEquationData(index, componentStateDot, yDot);
146 }
147
148 // we retrieve the primaryStateDot array after the secondary equations have
149 // been computed in case they change the main state derivatives; this happens
150 // for example in optimal control when the secondary equations handle co-state,
151 // which changes control, and the control changes the primary state
152 mapper.insertEquationData(0, primaryStateDot, yDot);
153
154 return yDot;
155
156 }
157
158 }