View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.linear;
24  
25  import org.hipparchus.exception.LocalizedCoreFormats;
26  import org.hipparchus.exception.MathIllegalArgumentException;
27  import org.hipparchus.util.FastMath;
28  
29  /**
30   * Calculates the rectangular Cholesky decomposition of a matrix.
31   * <p>The rectangular Cholesky decomposition of a real symmetric positive
32   * semidefinite matrix A consists of a rectangular matrix B with the same
33   * number of rows such that: A is almost equal to BB<sup>T</sup>, depending
34   * on a user-defined tolerance. In a sense, this is the square root of A.</p>
35   * <p>The difference with respect to the regular {@link CholeskyDecomposition}
36   * is that rows/columns may be permuted (hence the rectangular shape instead
37   * of the traditional triangular shape) and there is a threshold to ignore
38   * small diagonal elements. This is used for example to generate {@link
39   * org.hipparchus.random.CorrelatedRandomVectorGenerator correlated
40   * random n-dimensions vectors} in a p-dimension subspace (p &lt; n).
41   * In other words, it allows generating random vectors from a covariance
42   * matrix that is only positive semidefinite, and not positive definite.</p>
43   * <p>Rectangular Cholesky decomposition is <em>not</em> suited for solving
44   * linear systems, so it does not provide any {@link DecompositionSolver
45   * decomposition solver}.</p>
46   *
47   * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
48   * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
49   */
50  public class RectangularCholeskyDecomposition {
51  
52      /** Permutated Cholesky root of the symmetric positive semidefinite matrix. */
53      private final RealMatrix root;
54  
55      /** Rank of the symmetric positive semidefinite matrix. */
56      private int rank;
57  
58      /**
59       * Decompose a symmetric positive semidefinite matrix.
60       * <p>
61       * <b>Note:</b> this constructor follows the linpack method to detect dependent
62       * columns by proceeding with the Cholesky algorithm until a nonpositive diagonal
63       * element is encountered.
64       *
65       * @see <a href="http://eprints.ma.man.ac.uk/1193/01/covered/MIMS_ep2008_56.pdf">
66       * Analysis of the Cholesky Decomposition of a Semi-definite Matrix</a>
67       *
68       * @param matrix Symmetric positive semidefinite matrix.
69       * @exception MathIllegalArgumentException if the matrix is not
70       * positive semidefinite.
71       */
72      public RectangularCholeskyDecomposition(RealMatrix matrix)
73          throws MathIllegalArgumentException {
74          this(matrix, 0);
75      }
76  
77      /**
78       * Decompose a symmetric positive semidefinite matrix.
79       *
80       * @param matrix Symmetric positive semidefinite matrix.
81       * @param small Diagonal elements threshold under which columns are
82       * considered to be dependent on previous ones and are discarded.
83       * @exception MathIllegalArgumentException if the matrix is not
84       * positive semidefinite.
85       */
86      public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
87          throws MathIllegalArgumentException {
88  
89          final int order = matrix.getRowDimension();
90          final double[][] c = matrix.getData();
91          final double[][] b = new double[order][order];
92  
93          int[] index = new int[order];
94          for (int i = 0; i < order; ++i) {
95              index[i] = i;
96          }
97  
98          int r = 0;
99          for (boolean loop = true; loop;) {
100 
101             // find maximal diagonal element
102             int swapR = r;
103             for (int i = r + 1; i < order; ++i) {
104                 int ii  = index[i];
105                 int isr = index[swapR];
106                 if (c[ii][ii] > c[isr][isr]) {
107                     swapR = i;
108                 }
109             }
110 
111 
112             // swap elements
113             if (swapR != r) {
114                 final int tmpIndex    = index[r];
115                 index[r]              = index[swapR];
116                 index[swapR]          = tmpIndex;
117                 final double[] tmpRow = b[r];
118                 b[r]                  = b[swapR];
119                 b[swapR]              = tmpRow;
120             }
121 
122             // check diagonal element
123             int ir = index[r];
124             if (c[ir][ir] <= small) {
125 
126                 if (r == 0) {
127                     throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_POSITIVE_DEFINITE_MATRIX);
128                 }
129 
130                 // check remaining diagonal elements
131                 for (int i = r; i < order; ++i) {
132                     if (c[index[i]][index[i]] < -small) {
133                         // there is at least one sufficiently negative diagonal element,
134                         // the symmetric positive semidefinite matrix is wrong
135                         throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_POSITIVE_DEFINITE_MATRIX);
136                     }
137                 }
138 
139                 // all remaining diagonal elements are close to zero, we consider we have
140                 // found the rank of the symmetric positive semidefinite matrix
141                 loop = false;
142 
143             } else {
144 
145                 // transform the matrix
146                 final double sqrt = FastMath.sqrt(c[ir][ir]);
147                 b[r][r] = sqrt;
148                 final double inverse  = 1 / sqrt;
149                 final double inverse2 = 1 / c[ir][ir];
150                 for (int i = r + 1; i < order; ++i) {
151                     final int ii = index[i];
152                     final double e = inverse * c[ii][ir];
153                     b[i][r] = e;
154                     c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2;
155                     for (int j = r + 1; j < i; ++j) {
156                         final int ij = index[j];
157                         final double f = c[ii][ij] - e * b[j][r];
158                         c[ii][ij] = f;
159                         c[ij][ii] = f;
160                     }
161                 }
162 
163                 // prepare next iteration
164                 loop = ++r < order;
165             }
166         }
167 
168         // build the root matrix
169         rank = r;
170         root = MatrixUtils.createRealMatrix(order, r);
171         for (int i = 0; i < order; ++i) {
172             for (int j = 0; j < r; ++j) {
173                 root.setEntry(index[i], j, b[i][j]);
174             }
175         }
176 
177     }
178 
179     /** Get the root of the covariance matrix.
180      * The root is the rectangular matrix <code>B</code> such that
181      * the covariance matrix is equal to <code>B.B<sup>T</sup></code>
182      * @return root of the square matrix
183      * @see #getRank()
184      */
185     public RealMatrix getRootMatrix() {
186         return root;
187     }
188 
189     /** Get the rank of the symmetric positive semidefinite matrix.
190      * The r is the number of independent rows in the symmetric positive semidefinite
191      * matrix, it is also the number of columns of the rectangular
192      * matrix of the decomposition.
193      * @return r of the square matrix.
194      * @see #getRootMatrix()
195      */
196     public int getRank() {
197         return rank;
198     }
199 
200 }