1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 23 package org.hipparchus.linear; 24 25 import org.hipparchus.util.FastMath; 26 27 28 /** 29 * Calculates the rank-revealing QR-decomposition of a matrix, with column pivoting. 30 * <p>The rank-revealing QR-decomposition of a matrix A consists of three matrices Q, 31 * R and P such that AP=QR. Q is orthogonal (Q<sup>T</sup>Q = I), and R is upper triangular. 32 * If A is m×n, Q is m×m and R is m×n and P is n×n.</p> 33 * <p>QR decomposition with column pivoting produces a rank-revealing QR 34 * decomposition and the {@link #getRank(double)} method may be used to return the rank of the 35 * input matrix A.</p> 36 * <p>This class compute the decomposition using Householder reflectors.</p> 37 * <p>For efficiency purposes, the decomposition in packed form is transposed. 38 * This allows inner loop to iterate inside rows, which is much more cache-efficient 39 * in Java.</p> 40 * <p>This class is based on the class with similar name from the 41 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the 42 * following changes:</p> 43 * <ul> 44 * <li>a {@link #getQT() getQT} method has been added,</li> 45 * <li>the {@code solve} and {@code isFullRank} methods have been replaced 46 * by a {@link #getSolver() getSolver} method and the equivalent methods 47 * provided by the returned {@link DecompositionSolver}.</li> 48 * </ul> 49 * 50 * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a> 51 * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a> 52 * 53 */ 54 public class RRQRDecomposition extends QRDecomposition { 55 56 /** An array to record the column pivoting for later creation of P. */ 57 private int[] p; 58 59 /** Cached value of P. */ 60 private RealMatrix cachedP; 61 62 63 /** 64 * Calculates the QR-decomposition of the given matrix. 65 * The singularity threshold defaults to zero. 66 * 67 * @param matrix The matrix to decompose. 68 * 69 * @see #RRQRDecomposition(RealMatrix, double) 70 */ 71 public RRQRDecomposition(RealMatrix matrix) { 72 this(matrix, 0d); 73 } 74 75 /** 76 * Calculates the QR-decomposition of the given matrix. 77 * 78 * @param matrix The matrix to decompose. 79 * @param threshold Singularity threshold. 80 * @see #RRQRDecomposition(RealMatrix) 81 */ 82 public RRQRDecomposition(RealMatrix matrix, double threshold) { 83 super(matrix, threshold); 84 } 85 86 /** Decompose matrix. 87 * @param qrt transposed matrix 88 */ 89 @Override 90 protected void decompose(double[][] qrt) { 91 p = new int[qrt.length]; 92 for (int i = 0; i < p.length; i++) { 93 p[i] = i; 94 } 95 super.decompose(qrt); 96 } 97 98 /** Perform Householder reflection for a minor A(minor, minor) of A. 99 * @param minor minor index 100 * @param qrt transposed matrix 101 */ 102 @Override 103 protected void performHouseholderReflection(int minor, double[][] qrt) { 104 105 double l2NormSquaredMax = 0; 106 // Find the unreduced column with the greatest L2-Norm 107 int l2NormSquaredMaxIndex = minor; 108 for (int i = minor; i < qrt.length; i++) { 109 double l2NormSquared = 0; 110 for (int j = 0; j < qrt[i].length; j++) { 111 l2NormSquared += qrt[i][j] * qrt[i][j]; 112 } 113 if (l2NormSquared > l2NormSquaredMax) { 114 l2NormSquaredMax = l2NormSquared; 115 l2NormSquaredMaxIndex = i; 116 } 117 } 118 // swap the current column with that with the greated L2-Norm and record in p 119 if (l2NormSquaredMaxIndex != minor) { 120 double[] tmp1 = qrt[minor]; 121 qrt[minor] = qrt[l2NormSquaredMaxIndex]; 122 qrt[l2NormSquaredMaxIndex] = tmp1; 123 int tmp2 = p[minor]; 124 p[minor] = p[l2NormSquaredMaxIndex]; 125 p[l2NormSquaredMaxIndex] = tmp2; 126 } 127 128 super.performHouseholderReflection(minor, qrt); 129 130 } 131 132 133 /** 134 * Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR. 135 * 136 * If no pivoting is used in this decomposition then P is equal to the identity matrix. 137 * 138 * @return a permutation matrix. 139 */ 140 public RealMatrix getP() { 141 if (cachedP == null) { 142 int n = p.length; 143 cachedP = MatrixUtils.createRealMatrix(n,n); 144 for (int i = 0; i < n; i++) { 145 cachedP.setEntry(p[i], i, 1); 146 } 147 } 148 return cachedP ; 149 } 150 151 /** 152 * Return the effective numerical matrix rank. 153 * <p>The effective numerical rank is the number of non-negligible 154 * singular values.</p> 155 * <p>This implementation looks at Frobenius norms of the sequence of 156 * bottom right submatrices. When a large fall in norm is seen, 157 * the rank is returned. The drop is computed as:</p> 158 * <pre> 159 * (thisNorm/lastNorm) * rNorm < dropThreshold 160 * </pre> 161 * <p> 162 * where thisNorm is the Frobenius norm of the current submatrix, 163 * lastNorm is the Frobenius norm of the previous submatrix, 164 * rNorm is is the Frobenius norm of the complete matrix 165 * </p> 166 * 167 * @param dropThreshold threshold triggering rank computation 168 * @return effective numerical matrix rank 169 */ 170 public int getRank(final double dropThreshold) { 171 RealMatrix r = getR(); 172 int rows = r.getRowDimension(); 173 int columns = r.getColumnDimension(); 174 int rank = 1; 175 double lastNorm = r.getFrobeniusNorm(); 176 double rNorm = lastNorm; 177 while (rank < FastMath.min(rows, columns)) { 178 double thisNorm = r.getSubMatrix(rank, rows - 1, rank, columns - 1).getFrobeniusNorm(); 179 if (thisNorm == 0 || (thisNorm / lastNorm) * rNorm < dropThreshold) { 180 break; 181 } 182 lastNorm = thisNorm; 183 rank++; 184 } 185 return rank; 186 } 187 188 /** 189 * Get a solver for finding the A × X = B solution in least square sense. 190 * <p> 191 * Least Square sense means a solver can be computed for an overdetermined system, 192 * (i.e. a system with more equations than unknowns, which corresponds to a tall A 193 * matrix with more rows than columns). In any case, if the matrix is singular 194 * within the tolerance set at {@link RRQRDecomposition#RRQRDecomposition(RealMatrix, 195 * double) construction}, an error will be triggered when 196 * the {@link DecompositionSolver#solve(RealVector) solve} method will be called. 197 * </p> 198 * @return a solver 199 */ 200 @Override 201 public DecompositionSolver getSolver() { 202 return new Solver(super.getSolver(), this.getP()); 203 } 204 205 /** Specialized solver. */ 206 private static class Solver implements DecompositionSolver { 207 208 /** Upper level solver. */ 209 private final DecompositionSolver upper; 210 211 /** A permutation matrix for the pivots used in the QR decomposition */ 212 private RealMatrix p; 213 214 /** 215 * Build a solver from decomposed matrix. 216 * 217 * @param upper upper level solver. 218 * @param p permutation matrix 219 */ 220 private Solver(final DecompositionSolver upper, final RealMatrix p) { 221 this.upper = upper; 222 this.p = p; 223 } 224 225 /** {@inheritDoc} */ 226 @Override 227 public boolean isNonSingular() { 228 return upper.isNonSingular(); 229 } 230 231 /** {@inheritDoc} */ 232 @Override 233 public RealVector solve(RealVector b) { 234 return p.operate(upper.solve(b)); 235 } 236 237 /** {@inheritDoc} */ 238 @Override 239 public RealMatrix solve(RealMatrix b) { 240 return p.multiply(upper.solve(b)); 241 } 242 243 /** 244 * {@inheritDoc} 245 * @throws org.hipparchus.exception.MathIllegalArgumentException 246 * if the decomposed matrix is singular. 247 */ 248 @Override 249 public RealMatrix getInverse() { 250 return solve(MatrixUtils.createRealIdentityMatrix(p.getRowDimension())); 251 } 252 /** {@inheritDoc} */ 253 @Override 254 public int getRowDimension() { 255 return upper.getRowDimension(); 256 } 257 258 /** {@inheritDoc} */ 259 @Override 260 public int getColumnDimension() { 261 return upper.getColumnDimension(); 262 } 263 264 } 265 }