1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.geometry.spherical.twod;
23
24 import org.hipparchus.exception.MathIllegalArgumentException;
25 import org.hipparchus.exception.MathRuntimeException;
26 import org.hipparchus.geometry.Point;
27 import org.hipparchus.geometry.Space;
28 import org.hipparchus.geometry.euclidean.threed.Vector3D;
29 import org.hipparchus.util.FastMath;
30 import org.hipparchus.util.MathUtils;
31 import org.hipparchus.util.SinCos;
32
33 /** This class represents a point on the 2-sphere.
34 * <p>
35 * We use the mathematical convention to use the azimuthal angle \( \theta \)
36 * in the x-y plane as the first coordinate, and the polar angle \( \varphi \)
37 * as the second coordinate (see <a
38 * href="http://mathworld.wolfram.com/SphericalCoordinates.html">Spherical
39 * Coordinates</a> in MathWorld).
40 * </p>
41 * <p>Instances of this class are guaranteed to be immutable.</p>
42 */
43 public class S2Point implements Point<Sphere2D, S2Point> {
44
45 /** +I (coordinates: \( \theta = 0, \varphi = \pi/2 \)). */
46 public static final S2Point PLUS_I = new S2Point(0, MathUtils.SEMI_PI, Vector3D.PLUS_I);
47
48 /** +J (coordinates: \( \theta = \pi/2, \varphi = \pi/2 \))). */
49 public static final S2Point PLUS_J = new S2Point(MathUtils.SEMI_PI, MathUtils.SEMI_PI, Vector3D.PLUS_J);
50
51 /** +K (coordinates: \( \theta = any angle, \varphi = 0 \)). */
52 public static final S2Point PLUS_K = new S2Point(0, 0, Vector3D.PLUS_K);
53
54 /** -I (coordinates: \( \theta = \pi, \varphi = \pi/2 \)). */
55 public static final S2Point MINUS_I = new S2Point(FastMath.PI, MathUtils.SEMI_PI, Vector3D.MINUS_I);
56
57 /** -J (coordinates: \( \theta = 3\pi/2, \varphi = \pi/2 \)). */
58 public static final S2Point MINUS_J = new S2Point(1.5 * FastMath.PI, MathUtils.SEMI_PI, Vector3D.MINUS_J);
59
60 /** -K (coordinates: \( \theta = any angle, \varphi = \pi \)). */
61 public static final S2Point MINUS_K = new S2Point(0, FastMath.PI, Vector3D.MINUS_K);
62
63 // CHECKSTYLE: stop ConstantName
64 /** A vector with all coordinates set to NaN. */
65 public static final S2Point NaN = new S2Point(Double.NaN, Double.NaN, Vector3D.NaN);
66 // CHECKSTYLE: resume ConstantName
67
68 /** Serializable UID. */
69 private static final long serialVersionUID = 20131218L;
70
71 /** Azimuthal angle \( \theta \) in the x-y plane. */
72 private final double theta;
73
74 /** Polar angle \( \varphi \). */
75 private final double phi;
76
77 /** Corresponding 3D normalized vector. */
78 private final Vector3D vector;
79
80 /** Simple constructor.
81 * Build a vector from its spherical coordinates
82 * @param theta azimuthal angle \( \theta \) in the x-y plane
83 * @param phi polar angle \( \varphi \)
84 * @see #getTheta()
85 * @see #getPhi()
86 * @exception MathIllegalArgumentException if \( \varphi \) is not in the [\( 0; \pi \)] range
87 */
88 public S2Point(final double theta, final double phi)
89 throws MathIllegalArgumentException {
90 this(theta, phi, vector(theta, phi));
91 }
92
93 /** Simple constructor.
94 * Build a vector from its underlying 3D vector
95 * @param vector 3D vector
96 * @exception MathRuntimeException if vector norm is zero
97 */
98 public S2Point(final Vector3D vector) throws MathRuntimeException {
99 this(FastMath.atan2(vector.getY(), vector.getX()), Vector3D.angle(Vector3D.PLUS_K, vector),
100 vector.normalize());
101 }
102
103 /** Build a point from its internal components.
104 * @param theta azimuthal angle \( \theta \) in the x-y plane
105 * @param phi polar angle \( \varphi \)
106 * @param vector corresponding vector
107 */
108 private S2Point(final double theta, final double phi, final Vector3D vector) {
109 this.theta = theta;
110 this.phi = phi;
111 this.vector = vector;
112 }
113
114 /** Build the normalized vector corresponding to spherical coordinates.
115 * @param theta azimuthal angle \( \theta \) in the x-y plane
116 * @param phi polar angle \( \varphi \)
117 * @return normalized vector
118 * @exception MathIllegalArgumentException if \( \varphi \) is not in the [\( 0; \pi \)] range
119 */
120 private static Vector3D vector(final double theta, final double phi)
121 throws MathIllegalArgumentException {
122
123 MathUtils.checkRangeInclusive(phi, 0, FastMath.PI);
124
125 final SinCos scTheta = FastMath.sinCos(theta);
126 final SinCos scPhi = FastMath.sinCos(phi);
127
128 return new Vector3D(scTheta.cos() * scPhi.sin(), scTheta.sin() * scPhi.sin(), scPhi.cos());
129
130 }
131
132 /** Get the azimuthal angle \( \theta \) in the x-y plane.
133 * @return azimuthal angle \( \theta \) in the x-y plane
134 * @see #S2Point(double, double)
135 */
136 public double getTheta() {
137 return theta;
138 }
139
140 /** Get the polar angle \( \varphi \).
141 * @return polar angle \( \varphi \)
142 * @see #S2Point(double, double)
143 */
144 public double getPhi() {
145 return phi;
146 }
147
148 /** Get the corresponding normalized vector in the 3D euclidean space.
149 * @return normalized vector
150 */
151 public Vector3D getVector() {
152 return vector;
153 }
154
155 /** {@inheritDoc} */
156 @Override
157 public Space getSpace() {
158 return Sphere2D.getInstance();
159 }
160
161 /** {@inheritDoc} */
162 @Override
163 public boolean isNaN() {
164 return Double.isNaN(theta) || Double.isNaN(phi);
165 }
166
167 /** Get the opposite of the instance.
168 * @return a new vector which is opposite to the instance
169 */
170 public S2Point negate() {
171 return new S2Point(FastMath.PI + theta, FastMath.PI - phi, vector.negate());
172 }
173
174 /** {@inheritDoc} */
175 @Override
176 public double distance(final S2Point point) {
177 return distance(this, point);
178 }
179
180 /** Compute the distance (angular separation) between two points.
181 * @param p1 first vector
182 * @param p2 second vector
183 * @return the angular separation between p1 and p2
184 */
185 public static double distance(S2Point p1, S2Point p2) {
186 return Vector3D.angle(p1.vector, p2.vector);
187 }
188
189 /** {@inheritDoc} */
190 @Override
191 public S2Point moveTowards(final S2Point other, final double ratio) {
192 final double alpha = Vector3D.angle(vector, other.vector);
193 if (alpha == 0) {
194 // special case to avoid division by zero in normalization below
195 return this;
196 }
197 else {
198 final double sA = (FastMath.sin((1 - ratio) * alpha));
199 final double sB = FastMath.sin(ratio * alpha);
200 return new S2Point(new Vector3D(sA, vector, sB, other.vector));
201 }
202 }
203
204 /**
205 * Test for the equality of two points on the 2-sphere.
206 * <p>
207 * If all coordinates of two points are exactly the same, and none are
208 * {@code Double.NaN}, the two points are considered to be equal.
209 * </p>
210 * <p>
211 * {@code NaN} coordinates are considered to affect globally the point
212 * and be equals to each other - i.e, if either (or all) coordinates of the
213 * point are equal to {@code Double.NaN}, the point is equal to
214 * {@link #NaN}.
215 * </p>
216 *
217 * @param other Object to test for equality to this
218 * @return true if two points on the 2-sphere objects are equal, false if
219 * object is null, not an instance of S2Point, or
220 * not equal to this S2Point instance
221 *
222 */
223 @Override
224 public boolean equals(Object other) {
225
226 if (this == other) {
227 return true;
228 }
229
230 if (other instanceof S2Point) {
231 final S2Point rhs = (S2Point) other;
232 return theta == rhs.theta && phi == rhs.phi || isNaN() && rhs.isNaN();
233 }
234
235 return false;
236
237 }
238
239 /**
240 * Test for the equality of two points on the 2-sphere.
241 * <p>
242 * If all coordinates of two points are exactly the same, and none are
243 * {@code Double.NaN}, the two points are considered to be equal.
244 * </p>
245 * <p>
246 * In compliance with IEEE754 handling, if any coordinates of any of the
247 * two points are {@code NaN}, then the points are considered different.
248 * This implies that {@link #NaN S2Point.NaN}.equals({@link #NaN S2Point.NaN})
249 * returns {@code false} despite the instance is checked against itself.
250 * </p>
251 *
252 * @param other Object to test for equality to this
253 * @return true if two points objects are equal, false if
254 * object is null, not an instance of S2Point, or
255 * not equal to this S2Point instance
256 * @since 2.1
257 */
258 public boolean equalsIeee754(Object other) {
259
260 if (this == other && !isNaN()) {
261 return true;
262 }
263
264 if (other instanceof S2Point) {
265 final S2Point rhs = (S2Point) other;
266 return phi == rhs.phi && theta == rhs.theta;
267 }
268
269 return false;
270
271 }
272
273 /**
274 * Get a hashCode for the point.
275 * <p>
276 * All NaN values have the same hash code.</p>
277 *
278 * @return a hash code value for this object
279 */
280 @Override
281 public int hashCode() {
282 if (isNaN()) {
283 return 542;
284 }
285 return 134 * (37 * MathUtils.hash(theta) + MathUtils.hash(phi));
286 }
287
288 @Override
289 public String toString() {
290 return "S2Point{" +
291 "theta=" + theta +
292 ", phi=" + phi +
293 '}';
294 }
295
296 }