1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 23 package org.hipparchus.clustering.evaluation; 24 25 import java.util.List; 26 27 import org.hipparchus.clustering.Cluster; 28 import org.hipparchus.clustering.Clusterable; 29 import org.hipparchus.clustering.distance.DistanceMeasure; 30 import org.hipparchus.stat.descriptive.moment.Variance; 31 32 /** 33 * Computes the sum of intra-cluster distance variances according to the formula: 34 * \] score = \sum\limits_{i=1}^n \sigma_i^2 \] 35 * where n is the number of clusters and \( \sigma_i^2 \) is the variance of 36 * intra-cluster distances of cluster \( c_i \). 37 * 38 * @param <T> the type of the clustered points 39 */ 40 public class SumOfClusterVariances<T extends Clusterable> extends ClusterEvaluator<T> { 41 42 /** Simple constructor. 43 * @param measure the distance measure to use 44 */ 45 public SumOfClusterVariances(final DistanceMeasure measure) { 46 super(measure); 47 } 48 49 /** {@inheritDoc} */ 50 @Override 51 public double score(final List<? extends Cluster<T>> clusters) { 52 double varianceSum = 0.0; 53 for (final Cluster<T> cluster : clusters) { 54 if (!cluster.getPoints().isEmpty()) { 55 56 final Clusterable center = centroidOf(cluster); 57 58 // compute the distance variance of the current cluster 59 final Variance stat = new Variance(); 60 for (final T point : cluster.getPoints()) { 61 stat.increment(distance(point, center)); 62 } 63 varianceSum += stat.getResult(); 64 65 } 66 } 67 return varianceSum; 68 } 69 70 }