1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 package org.hipparchus.analysis.solvers;
23
24 import org.hipparchus.exception.MathIllegalArgumentException;
25 import org.hipparchus.exception.MathIllegalStateException;
26 import org.hipparchus.util.FastMath;
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 public class MullerSolver extends AbstractUnivariateSolver {
53
54
55 private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
56
57
58
59
60 public MullerSolver() {
61 this(DEFAULT_ABSOLUTE_ACCURACY);
62 }
63
64
65
66
67
68 public MullerSolver(double absoluteAccuracy) {
69 super(absoluteAccuracy);
70 }
71
72
73
74
75
76
77 public MullerSolver(double relativeAccuracy,
78 double absoluteAccuracy) {
79 super(relativeAccuracy, absoluteAccuracy);
80 }
81
82
83
84
85 @Override
86 protected double doSolve()
87 throws MathIllegalArgumentException, MathIllegalStateException {
88 final double min = getMin();
89 final double max = getMax();
90 final double initial = getStartValue();
91
92 final double functionValueAccuracy = getFunctionValueAccuracy();
93
94 verifySequence(min, initial, max);
95
96
97 final double fMin = computeObjectiveValue(min);
98 if (FastMath.abs(fMin) < functionValueAccuracy) {
99 return min;
100 }
101 final double fMax = computeObjectiveValue(max);
102 if (FastMath.abs(fMax) < functionValueAccuracy) {
103 return max;
104 }
105 final double fInitial = computeObjectiveValue(initial);
106 if (FastMath.abs(fInitial) < functionValueAccuracy) {
107 return initial;
108 }
109
110 verifyBracketing(min, max);
111
112 if (isBracketing(min, initial)) {
113 return solve(min, initial, fMin, fInitial);
114 } else {
115 return solve(initial, max, fInitial, fMax);
116 }
117 }
118
119
120
121
122
123
124
125
126
127
128
129
130 private double solve(double min, double max,
131 double fMin, double fMax)
132 throws MathIllegalStateException {
133 final double relativeAccuracy = getRelativeAccuracy();
134 final double absoluteAccuracy = getAbsoluteAccuracy();
135 final double functionValueAccuracy = getFunctionValueAccuracy();
136
137
138
139
140
141
142 double x0 = min;
143 double y0 = fMin;
144 double x2 = max;
145 double y2 = fMax;
146 double x1 = 0.5 * (x0 + x2);
147 double y1 = computeObjectiveValue(x1);
148
149 double oldx = Double.POSITIVE_INFINITY;
150 while (true) {
151
152
153
154
155 final double d01 = (y1 - y0) / (x1 - x0);
156 final double d12 = (y2 - y1) / (x2 - x1);
157 final double d012 = (d12 - d01) / (x2 - x0);
158 final double c1 = d01 + (x1 - x0) * d012;
159 final double delta = c1 * c1 - 4 * y1 * d012;
160 final double xplus = x1 + (-2.0 * y1) / (c1 + FastMath.sqrt(delta));
161 final double xminus = x1 + (-2.0 * y1) / (c1 - FastMath.sqrt(delta));
162
163
164 final double x = isSequence(x0, xplus, x2) ? xplus : xminus;
165 final double y = computeObjectiveValue(x);
166
167
168 final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
169 if (FastMath.abs(x - oldx) <= tolerance ||
170 FastMath.abs(y) <= functionValueAccuracy) {
171 return x;
172 }
173
174
175
176
177
178 boolean bisect = (x < x1 && (x1 - x0) > 0.95 * (x2 - x0)) ||
179 (x > x1 && (x2 - x1) > 0.95 * (x2 - x0)) ||
180 (x == x1);
181
182 if (!bisect) {
183 x0 = x < x1 ? x0 : x1;
184 y0 = x < x1 ? y0 : y1;
185 x2 = x > x1 ? x2 : x1;
186 y2 = x > x1 ? y2 : y1;
187 x1 = x; y1 = y;
188 oldx = x;
189 } else {
190 double xm = 0.5 * (x0 + x2);
191 double ym = computeObjectiveValue(xm);
192 if (FastMath.signum(y0) + FastMath.signum(ym) == 0.0) {
193 x2 = xm; y2 = ym;
194 } else {
195 x0 = xm; y0 = ym;
196 }
197 x1 = 0.5 * (x0 + x2);
198 y1 = computeObjectiveValue(x1);
199 oldx = Double.POSITIVE_INFINITY;
200 }
201 }
202 }
203 }