View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.analysis.solvers;
23  
24  import org.hipparchus.exception.MathIllegalArgumentException;
25  import org.hipparchus.exception.MathIllegalStateException;
26  import org.hipparchus.util.FastMath;
27  
28  /**
29   * This class implements the <a href="http://mathworld.wolfram.com/MullersMethod.html">
30   * Muller's Method</a> for root finding of real univariate functions. For
31   * reference, see <b>Elementary Numerical Analysis</b>, ISBN 0070124477,
32   * chapter 3.
33   * <p>
34   * Muller's method applies to both real and complex functions, but here we
35   * restrict ourselves to real functions.
36   * This class differs from {@link MullerSolver} in the way it avoids complex
37   * operations.</p><p>
38   * Muller's original method would have function evaluation at complex point.
39   * Since our f(x) is real, we have to find ways to avoid that. Bracketing
40   * condition is one way to go: by requiring bracketing in every iteration,
41   * the newly computed approximation is guaranteed to be real.</p>
42   * <p>
43   * Normally Muller's method converges quadratically in the vicinity of a
44   * zero, however it may be very slow in regions far away from zeros. For
45   * example, f(x) = exp(x) - 1, min = -50, max = 100. In such case we use
46   * bisection as a safety backup if it performs very poorly.</p>
47   * <p>
48   * The formulas here use divided differences directly.</p>
49   *
50   * @see MullerSolver2
51   */
52  public class MullerSolver extends AbstractUnivariateSolver {
53  
54      /** Default absolute accuracy. */
55      private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
56  
57      /**
58       * Construct a solver with default accuracy (1e-6).
59       */
60      public MullerSolver() {
61          this(DEFAULT_ABSOLUTE_ACCURACY);
62      }
63      /**
64       * Construct a solver.
65       *
66       * @param absoluteAccuracy Absolute accuracy.
67       */
68      public MullerSolver(double absoluteAccuracy) {
69          super(absoluteAccuracy);
70      }
71      /**
72       * Construct a solver.
73       *
74       * @param relativeAccuracy Relative accuracy.
75       * @param absoluteAccuracy Absolute accuracy.
76       */
77      public MullerSolver(double relativeAccuracy,
78                          double absoluteAccuracy) {
79          super(relativeAccuracy, absoluteAccuracy);
80      }
81  
82      /**
83       * {@inheritDoc}
84       */
85      @Override
86      protected double doSolve()
87          throws MathIllegalArgumentException, MathIllegalStateException {
88          final double min = getMin();
89          final double max = getMax();
90          final double initial = getStartValue();
91  
92          final double functionValueAccuracy = getFunctionValueAccuracy();
93  
94          verifySequence(min, initial, max);
95  
96          // check for zeros before verifying bracketing
97          final double fMin = computeObjectiveValue(min);
98          if (FastMath.abs(fMin) < functionValueAccuracy) {
99              return min;
100         }
101         final double fMax = computeObjectiveValue(max);
102         if (FastMath.abs(fMax) < functionValueAccuracy) {
103             return max;
104         }
105         final double fInitial = computeObjectiveValue(initial);
106         if (FastMath.abs(fInitial) <  functionValueAccuracy) {
107             return initial;
108         }
109 
110         verifyBracketing(min, max);
111 
112         if (isBracketing(min, initial)) {
113             return solve(min, initial, fMin, fInitial);
114         } else {
115             return solve(initial, max, fInitial, fMax);
116         }
117     }
118 
119     /**
120      * Find a real root in the given interval.
121      *
122      * @param min Lower bound for the interval.
123      * @param max Upper bound for the interval.
124      * @param fMin function value at the lower bound.
125      * @param fMax function value at the upper bound.
126      * @return the point at which the function value is zero.
127      * @throws MathIllegalStateException if the allowed number of calls to
128      * the function to be solved has been exhausted.
129      */
130     private double solve(double min, double max,
131                          double fMin, double fMax)
132         throws MathIllegalStateException {
133         final double relativeAccuracy = getRelativeAccuracy();
134         final double absoluteAccuracy = getAbsoluteAccuracy();
135         final double functionValueAccuracy = getFunctionValueAccuracy();
136 
137         // [x0, x2] is the bracketing interval in each iteration
138         // x1 is the last approximation and an interpolation point in (x0, x2)
139         // x is the new root approximation and new x1 for next round
140         // d01, d12, d012 are divided differences
141 
142         double x0 = min;
143         double y0 = fMin;
144         double x2 = max;
145         double y2 = fMax;
146         double x1 = 0.5 * (x0 + x2);
147         double y1 = computeObjectiveValue(x1);
148 
149         double oldx = Double.POSITIVE_INFINITY;
150         while (true) {
151             // Muller's method employs quadratic interpolation through
152             // x0, x1, x2 and x is the zero of the interpolating parabola.
153             // Due to bracketing condition, this parabola must have two
154             // real roots and we choose one in [x0, x2] to be x.
155             final double d01 = (y1 - y0) / (x1 - x0);
156             final double d12 = (y2 - y1) / (x2 - x1);
157             final double d012 = (d12 - d01) / (x2 - x0);
158             final double c1 = d01 + (x1 - x0) * d012;
159             final double delta = c1 * c1 - 4 * y1 * d012;
160             final double xplus = x1 + (-2.0 * y1) / (c1 + FastMath.sqrt(delta));
161             final double xminus = x1 + (-2.0 * y1) / (c1 - FastMath.sqrt(delta));
162             // xplus and xminus are two roots of parabola and at least
163             // one of them should lie in (x0, x2)
164             final double x = isSequence(x0, xplus, x2) ? xplus : xminus;
165             final double y = computeObjectiveValue(x);
166 
167             // check for convergence
168             final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
169             if (FastMath.abs(x - oldx) <= tolerance ||
170                 FastMath.abs(y) <= functionValueAccuracy) {
171                 return x;
172             }
173 
174             // Bisect if convergence is too slow. Bisection would waste
175             // our calculation of x, hopefully it won't happen often.
176             // the real number equality test x == x1 is intentional and
177             // completes the proximity tests above it
178             boolean bisect = (x < x1 && (x1 - x0) > 0.95 * (x2 - x0)) ||
179                              (x > x1 && (x2 - x1) > 0.95 * (x2 - x0)) ||
180                              (x == x1);
181             // prepare the new bracketing interval for next iteration
182             if (!bisect) {
183                 x0 = x < x1 ? x0 : x1;
184                 y0 = x < x1 ? y0 : y1;
185                 x2 = x > x1 ? x2 : x1;
186                 y2 = x > x1 ? y2 : y1;
187                 x1 = x; y1 = y;
188                 oldx = x;
189             } else {
190                 double xm = 0.5 * (x0 + x2);
191                 double ym = computeObjectiveValue(xm);
192                 if (FastMath.signum(y0) + FastMath.signum(ym) == 0.0) {
193                     x2 = xm; y2 = ym;
194                 } else {
195                     x0 = xm; y0 = ym;
196                 }
197                 x1 = 0.5 * (x0 + x2);
198                 y1 = computeObjectiveValue(x1);
199                 oldx = Double.POSITIVE_INFINITY;
200             }
201         }
202     }
203 }