1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.analysis.polynomials; 23 24 import org.hipparchus.analysis.UnivariateFunction; 25 import org.hipparchus.exception.LocalizedCoreFormats; 26 import org.hipparchus.exception.MathIllegalArgumentException; 27 import org.hipparchus.util.FastMath; 28 import org.hipparchus.util.MathArrays; 29 30 /** 31 * Implements the representation of a real polynomial function in 32 * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html"> 33 * Lagrange Form</a>. For reference, see <b>Introduction to Numerical 34 * Analysis</b>, ISBN 038795452X, chapter 2. 35 * <p> 36 * The approximated function should be smooth enough for Lagrange polynomial 37 * to work well. Otherwise, consider using splines instead.</p> 38 * 39 */ 40 public class PolynomialFunctionLagrangeForm implements UnivariateFunction { 41 /** 42 * The coefficients of the polynomial, ordered by degree -- i.e. 43 * coefficients[0] is the constant term and coefficients[n] is the 44 * coefficient of x^n where n is the degree of the polynomial. 45 */ 46 private double[] coefficients; 47 /** 48 * Interpolating points (abscissas). 49 */ 50 private final double[] x; 51 /** 52 * Function values at interpolating points. 53 */ 54 private final double[] y; 55 /** 56 * Whether the polynomial coefficients are available. 57 */ 58 private boolean coefficientsComputed; 59 60 /** 61 * Construct a Lagrange polynomial with the given abscissas and function 62 * values. The order of interpolating points are not important. 63 * <p> 64 * The constructor makes copy of the input arrays and assigns them.</p> 65 * 66 * @param x interpolating points 67 * @param y function values at interpolating points 68 * @throws MathIllegalArgumentException if the array lengths are different. 69 * @throws MathIllegalArgumentException if the number of points is less than 2. 70 * @throws MathIllegalArgumentException 71 * if two abscissae have the same value. 72 */ 73 public PolynomialFunctionLagrangeForm(double[] x, double[] y) 74 throws MathIllegalArgumentException { 75 this.x = new double[x.length]; 76 this.y = new double[y.length]; 77 System.arraycopy(x, 0, this.x, 0, x.length); 78 System.arraycopy(y, 0, this.y, 0, y.length); 79 coefficientsComputed = false; 80 81 if (!verifyInterpolationArray(x, y, false)) { 82 MathArrays.sortInPlace(this.x, this.y); 83 // Second check in case some abscissa is duplicated. 84 verifyInterpolationArray(this.x, this.y, true); 85 } 86 } 87 88 /** 89 * Calculate the function value at the given point. 90 * 91 * @param z Point at which the function value is to be computed. 92 * @return the function value. 93 * @throws MathIllegalArgumentException if {@code x} and {@code y} have 94 * different lengths. 95 * @throws org.hipparchus.exception.MathIllegalArgumentException 96 * if {@code x} is not sorted in strictly increasing order. 97 * @throws MathIllegalArgumentException if the size of {@code x} is less 98 * than 2. 99 */ 100 @Override 101 public double value(double z) { 102 return evaluateInternal(x, y, z); 103 } 104 105 /** 106 * Returns the degree of the polynomial. 107 * 108 * @return the degree of the polynomial 109 */ 110 public int degree() { 111 return x.length - 1; 112 } 113 114 /** 115 * Returns a copy of the interpolating points array. 116 * <p> 117 * Changes made to the returned copy will not affect the polynomial.</p> 118 * 119 * @return a fresh copy of the interpolating points array 120 */ 121 public double[] getInterpolatingPoints() { 122 double[] out = new double[x.length]; 123 System.arraycopy(x, 0, out, 0, x.length); 124 return out; 125 } 126 127 /** 128 * Returns a copy of the interpolating values array. 129 * <p> 130 * Changes made to the returned copy will not affect the polynomial.</p> 131 * 132 * @return a fresh copy of the interpolating values array 133 */ 134 public double[] getInterpolatingValues() { 135 double[] out = new double[y.length]; 136 System.arraycopy(y, 0, out, 0, y.length); 137 return out; 138 } 139 140 /** 141 * Returns a copy of the coefficients array. 142 * <p> 143 * Changes made to the returned copy will not affect the polynomial.</p> 144 * <p> 145 * Note that coefficients computation can be ill-conditioned. Use with caution 146 * and only when it is necessary.</p> 147 * 148 * @return a fresh copy of the coefficients array 149 */ 150 public double[] getCoefficients() { 151 if (!coefficientsComputed) { 152 computeCoefficients(); 153 } 154 double[] out = new double[coefficients.length]; 155 System.arraycopy(coefficients, 0, out, 0, coefficients.length); 156 return out; 157 } 158 159 /** 160 * Evaluate the Lagrange polynomial using 161 * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html"> 162 * Neville's Algorithm</a>. It takes O(n^2) time. 163 * 164 * @param x Interpolating points array. 165 * @param y Interpolating values array. 166 * @param z Point at which the function value is to be computed. 167 * @return the function value. 168 * @throws MathIllegalArgumentException if {@code x} and {@code y} have 169 * different lengths. 170 * @throws MathIllegalArgumentException 171 * if {@code x} is not sorted in strictly increasing order. 172 * @throws MathIllegalArgumentException if the size of {@code x} is less 173 * than 2. 174 */ 175 public static double evaluate(double[] x, double[] y, double z) 176 throws MathIllegalArgumentException { 177 if (verifyInterpolationArray(x, y, false)) { 178 return evaluateInternal(x, y, z); 179 } 180 181 // Array is not sorted. 182 final double[] xNew = new double[x.length]; 183 final double[] yNew = new double[y.length]; 184 System.arraycopy(x, 0, xNew, 0, x.length); 185 System.arraycopy(y, 0, yNew, 0, y.length); 186 187 MathArrays.sortInPlace(xNew, yNew); 188 // Second check in case some abscissa is duplicated. 189 verifyInterpolationArray(xNew, yNew, true); 190 return evaluateInternal(xNew, yNew, z); 191 } 192 193 /** 194 * Evaluate the Lagrange polynomial using 195 * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html"> 196 * Neville's Algorithm</a>. It takes O(n^2) time. 197 * 198 * @param x Interpolating points array. 199 * @param y Interpolating values array. 200 * @param z Point at which the function value is to be computed. 201 * @return the function value. 202 * @throws MathIllegalArgumentException if {@code x} and {@code y} have 203 * different lengths. 204 * @throws org.hipparchus.exception.MathIllegalArgumentException 205 * if {@code x} is not sorted in strictly increasing order. 206 * @throws MathIllegalArgumentException if the size of {@code x} is less 207 * than 2. 208 */ 209 private static double evaluateInternal(double[] x, double[] y, double z) { 210 int nearest = 0; 211 final int n = x.length; 212 final double[] c = new double[n]; 213 final double[] d = new double[n]; 214 double min_dist = Double.POSITIVE_INFINITY; 215 for (int i = 0; i < n; i++) { 216 // initialize the difference arrays 217 c[i] = y[i]; 218 d[i] = y[i]; 219 // find out the abscissa closest to z 220 final double dist = FastMath.abs(z - x[i]); 221 if (dist < min_dist) { 222 nearest = i; 223 min_dist = dist; 224 } 225 } 226 227 // initial approximation to the function value at z 228 double value = y[nearest]; 229 230 for (int i = 1; i < n; i++) { 231 for (int j = 0; j < n-i; j++) { 232 final double tc = x[j] - z; 233 final double td = x[i+j] - z; 234 final double divider = x[j] - x[i+j]; 235 // update the difference arrays 236 final double w = (c[j+1] - d[j]) / divider; 237 c[j] = tc * w; 238 d[j] = td * w; 239 } 240 // sum up the difference terms to get the final value 241 if (nearest < 0.5*(n-i+1)) { 242 value += c[nearest]; // fork down 243 } else { 244 nearest--; 245 value += d[nearest]; // fork up 246 } 247 } 248 249 return value; 250 } 251 252 /** 253 * Calculate the coefficients of Lagrange polynomial from the 254 * interpolation data. It takes O(n^2) time. 255 * Note that this computation can be ill-conditioned: Use with caution 256 * and only when it is necessary. 257 */ 258 protected void computeCoefficients() { 259 final int n = degree() + 1; 260 coefficients = new double[n]; 261 for (int i = 0; i < n; i++) { 262 coefficients[i] = 0.0; 263 } 264 265 // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1]) 266 final double[] c = new double[n+1]; 267 c[0] = 1.0; 268 for (int i = 0; i < n; i++) { 269 for (int j = i; j > 0; j--) { 270 c[j] = c[j-1] - c[j] * x[i]; 271 } 272 c[0] *= -x[i]; 273 c[i+1] = 1; 274 } 275 276 final double[] tc = new double[n]; 277 for (int i = 0; i < n; i++) { 278 // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1]) 279 double d = 1; 280 for (int j = 0; j < n; j++) { 281 if (i != j) { 282 d *= x[i] - x[j]; 283 } 284 } 285 final double t = y[i] / d; 286 // Lagrange polynomial is the sum of n terms, each of which is a 287 // polynomial of degree n-1. tc[] are the coefficients of the i-th 288 // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]). 289 tc[n-1] = c[n]; // actually c[n] = 1 290 coefficients[n-1] += t * tc[n-1]; 291 for (int j = n-2; j >= 0; j--) { 292 tc[j] = c[j+1] + tc[j+1] * x[i]; 293 coefficients[j] += t * tc[j]; 294 } 295 } 296 297 coefficientsComputed = true; 298 } 299 300 /** 301 * Check that the interpolation arrays are valid. 302 * The arrays features checked by this method are that both arrays have the 303 * same length and this length is at least 2. 304 * 305 * @param x Interpolating points array. 306 * @param y Interpolating values array. 307 * @param abort Whether to throw an exception if {@code x} is not sorted. 308 * @throws MathIllegalArgumentException if the array lengths are different. 309 * @throws MathIllegalArgumentException if the number of points is less than 2. 310 * @throws org.hipparchus.exception.MathIllegalArgumentException 311 * if {@code x} is not sorted in strictly increasing order and {@code abort} 312 * is {@code true}. 313 * @return {@code false} if the {@code x} is not sorted in increasing order, 314 * {@code true} otherwise. 315 * @see #evaluate(double[], double[], double) 316 * @see #computeCoefficients() 317 */ 318 public static boolean verifyInterpolationArray(double[] x, double[] y, boolean abort) 319 throws MathIllegalArgumentException { 320 MathArrays.checkEqualLength(x, y); 321 if (x.length < 2) { 322 throw new MathIllegalArgumentException(LocalizedCoreFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true); 323 } 324 325 return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort); 326 } 327 }