1 /* 2 * Licensed to the Hipparchus project under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.hipparchus.analysis.polynomials; 18 19 import java.lang.reflect.Array; 20 import java.util.Arrays; 21 22 import org.hipparchus.Field; 23 import org.hipparchus.CalculusFieldElement; 24 import org.hipparchus.analysis.CalculusFieldUnivariateFunction; 25 import org.hipparchus.exception.LocalizedCoreFormats; 26 import org.hipparchus.exception.MathIllegalArgumentException; 27 import org.hipparchus.exception.NullArgumentException; 28 import org.hipparchus.util.MathArrays; 29 import org.hipparchus.util.MathUtils; 30 31 /** 32 * Represents a polynomial spline function. 33 * <p> 34 * A <strong>polynomial spline function</strong> consists of a set of 35 * <i>interpolating polynomials</i> and an ascending array of domain 36 * <i>knot points</i>, determining the intervals over which the spline function 37 * is defined by the constituent polynomials. The polynomials are assumed to 38 * have been computed to match the values of another function at the knot 39 * points. The value consistency constraints are not currently enforced by 40 * <code>PolynomialSplineFunction</code> itself, but are assumed to hold among 41 * the polynomials and knot points passed to the constructor.</p> 42 * <p> 43 * N.B.: The polynomials in the <code>polynomials</code> property must be 44 * centered on the knot points to compute the spline function values. 45 * See below.</p> 46 * <p> 47 * The domain of the polynomial spline function is 48 * <code>[smallest knot, largest knot]</code>. Attempts to evaluate the 49 * function at values outside of this range generate IllegalArgumentExceptions. 50 * </p> 51 * <p> 52 * The value of the polynomial spline function for an argument <code>x</code> 53 * is computed as follows: 54 * <ol> 55 * <li>The knot array is searched to find the segment to which <code>x</code> 56 * belongs. If <code>x</code> is less than the smallest knot point or greater 57 * than the largest one, an <code>IllegalArgumentException</code> 58 * is thrown.</li> 59 * <li> Let <code>j</code> be the index of the largest knot point that is less 60 * than or equal to <code>x</code>. The value returned is 61 * {@code polynomials[j](x - knot[j])}</li></ol> 62 * 63 * @param <T> the type of the field elements 64 * @since 1.5 65 */ 66 public class FieldPolynomialSplineFunction<T extends CalculusFieldElement<T>> implements CalculusFieldUnivariateFunction<T> { 67 68 /** 69 * Spline segment interval delimiters (knots). 70 * Size is n + 1 for n segments. 71 */ 72 private final T[] knots; 73 74 /** 75 * The polynomial functions that make up the spline. The first element 76 * determines the value of the spline over the first subinterval, the 77 * second over the second, etc. Spline function values are determined by 78 * evaluating these functions at {@code (x - knot[i])} where i is the 79 * knot segment to which x belongs. 80 */ 81 private final FieldPolynomialFunction<T>[] polynomials; 82 83 /** 84 * Number of spline segments. It is equal to the number of polynomials and 85 * to the number of partition points - 1. 86 */ 87 private final int n; 88 89 90 /** 91 * Construct a polynomial spline function with the given segment delimiters 92 * and interpolating polynomials. 93 * The constructor copies both arrays and assigns the copies to the knots 94 * and polynomials properties, respectively. 95 * 96 * @param knots Spline segment interval delimiters. 97 * @param polynomials Polynomial functions that make up the spline. 98 * @throws NullArgumentException if either of the input arrays is {@code null}. 99 * @throws MathIllegalArgumentException if knots has length less than 2. 100 * @throws MathIllegalArgumentException if {@code polynomials.length != knots.length - 1}. 101 * @throws MathIllegalArgumentException if the {@code knots} array is not strictly increasing. 102 * 103 */ 104 @SuppressWarnings("unchecked") 105 public FieldPolynomialSplineFunction(final T[] knots, final FieldPolynomialFunction<T>[] polynomials) 106 throws MathIllegalArgumentException, NullArgumentException { 107 if (knots == null || 108 polynomials == null) { 109 throw new NullArgumentException(); 110 } 111 if (knots.length < 2) { 112 throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION, 113 2, knots.length, false); 114 } 115 MathUtils.checkDimension(polynomials.length, knots.length - 1); 116 MathArrays.checkOrder(knots); 117 118 this.n = knots.length -1; 119 this.knots = knots.clone(); 120 this.polynomials = (FieldPolynomialFunction<T>[]) Array.newInstance(FieldPolynomialFunction.class, n); 121 System.arraycopy(polynomials, 0, this.polynomials, 0, n); 122 } 123 124 /** Get the {@link Field} to which the instance belongs. 125 * @return {@link Field} to which the instance belongs 126 */ 127 public Field<T> getField() { 128 return knots[0].getField(); 129 } 130 131 /** 132 * Compute the value for the function. 133 * See {@link FieldPolynomialSplineFunction} for details on the algorithm for 134 * computing the value of the function. 135 * 136 * @param v Point for which the function value should be computed. 137 * @return the value. 138 * @throws MathIllegalArgumentException if {@code v} is outside of the domain of the 139 * spline function (smaller than the smallest knot point or larger than the 140 * largest knot point). 141 */ 142 public T value(final double v) { 143 return value(getField().getZero().add(v)); 144 } 145 146 /** 147 * Compute the value for the function. 148 * See {@link FieldPolynomialSplineFunction} for details on the algorithm for 149 * computing the value of the function. 150 * 151 * @param v Point for which the function value should be computed. 152 * @return the value. 153 * @throws MathIllegalArgumentException if {@code v} is outside of the domain of the 154 * spline function (smaller than the smallest knot point or larger than the 155 * largest knot point). 156 */ 157 @Override 158 public T value(final T v) { 159 MathUtils.checkRangeInclusive(v.getReal(), knots[0].getReal(), knots[n].getReal()); 160 int i = Arrays.binarySearch(Arrays.stream(knots).map(T::getReal).toArray(), v.getReal()); 161 if (i < 0) { 162 i = -i - 2; 163 } 164 // This will handle the case where v is the last knot value 165 // There are only n-1 polynomials, so if v is the last knot 166 // then we will use the last polynomial to calculate the value. 167 if ( i >= polynomials.length ) { 168 i--; 169 } 170 return polynomials[i].value(v.subtract(knots[i])); 171 } 172 173 /** 174 * Get the number of spline segments. 175 * It is also the number of polynomials and the number of knot points - 1. 176 * 177 * @return the number of spline segments. 178 */ 179 public int getN() { 180 return n; 181 } 182 183 /** 184 * Get a copy of the interpolating polynomials array. 185 * It returns a fresh copy of the array. Changes made to the copy will 186 * not affect the polynomials property. 187 * 188 * @return the interpolating polynomials. 189 */ 190 public FieldPolynomialFunction<T>[] getPolynomials() { 191 return polynomials.clone(); 192 } 193 194 /** 195 * Get an array copy of the knot points. 196 * It returns a fresh copy of the array. Changes made to the copy 197 * will not affect the knots property. 198 * 199 * @return the knot points. 200 */ 201 public T[] getKnots() { 202 return knots.clone(); 203 } 204 205 /** 206 * Indicates whether a point is within the interpolation range. 207 * 208 * @param x Point. 209 * @return {@code true} if {@code x} is a valid point. 210 */ 211 public boolean isValidPoint(T x) { 212 if (x.getReal() < knots[0].getReal() || 213 x.getReal() > knots[n].getReal()) { 214 return false; 215 } else { 216 return true; 217 } 218 } 219 /** 220 * Get the derivative of the polynomial spline function. 221 * 222 * @return the derivative function. 223 */ 224 @SuppressWarnings("unchecked") 225 public FieldPolynomialSplineFunction<T> polynomialSplineDerivative() { 226 FieldPolynomialFunction<T>[] derivativePolynomials = 227 (FieldPolynomialFunction<T>[]) Array.newInstance(FieldPolynomialFunction.class, n); 228 for (int i = 0; i < n; i++) { 229 derivativePolynomials[i] = polynomials[i].polynomialDerivative(); 230 } 231 return new FieldPolynomialSplineFunction<>(knots, derivativePolynomials); 232 } 233 234 235 }