1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.analysis.interpolation; 23 24 import java.io.Serializable; 25 26 import org.hipparchus.analysis.polynomials.PolynomialFunctionLagrangeForm; 27 import org.hipparchus.analysis.polynomials.PolynomialFunctionNewtonForm; 28 import org.hipparchus.exception.MathIllegalArgumentException; 29 30 /** 31 * Implements the <a href= 32 * "http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html"> 33 * Divided Difference Algorithm</a> for interpolation of real univariate 34 * functions. For reference, see <b>Introduction to Numerical Analysis</b>, 35 * ISBN 038795452X, chapter 2. 36 * <p> 37 * The actual code of Neville's evaluation is in PolynomialFunctionLagrangeForm, 38 * this class provides an easy-to-use interface to it.</p> 39 * 40 */ 41 public class DividedDifferenceInterpolator 42 implements UnivariateInterpolator, Serializable { 43 /** serializable version identifier */ 44 private static final long serialVersionUID = 107049519551235069L; 45 46 /** Empty constructor. 47 * <p> 48 * This constructor is not strictly necessary, but it prevents spurious 49 * javadoc warnings with JDK 18 and later. 50 * </p> 51 * @since 3.0 52 */ 53 public DividedDifferenceInterpolator() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy 54 // nothing to do 55 } 56 57 /** 58 * Compute an interpolating function for the dataset. 59 * 60 * @param x Interpolating points array. 61 * @param y Interpolating values array. 62 * @return a function which interpolates the dataset. 63 * @throws MathIllegalArgumentException if the array lengths are different. 64 * @throws MathIllegalArgumentException if the number of points is less than 2. 65 * @throws MathIllegalArgumentException if {@code x} is not sorted in 66 * strictly increasing order. 67 */ 68 @Override 69 public PolynomialFunctionNewtonForm interpolate(double[] x, double[] y) 70 throws MathIllegalArgumentException { 71 /** 72 * a[] and c[] are defined in the general formula of Newton form: 73 * p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... + 74 * a[n](x-c[0])(x-c[1])...(x-c[n-1]) 75 */ 76 PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true); 77 78 /** 79 * When used for interpolation, the Newton form formula becomes 80 * p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... + 81 * f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2]) 82 * Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k]. 83 * <p> 84 * Note x[], y[], a[] have the same length but c[]'s size is one less.</p> 85 */ 86 final double[] c = new double[x.length-1]; 87 System.arraycopy(x, 0, c, 0, c.length); 88 89 final double[] a = computeDividedDifference(x, y); 90 return new PolynomialFunctionNewtonForm(a, c); 91 } 92 93 /** 94 * Return a copy of the divided difference array. 95 * <p> 96 * The divided difference array is defined recursively by <pre> 97 * f[x0] = f(x0) 98 * f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0) 99 * </pre> 100 * <p> 101 * The computational complexity is \(O(n^2)\) where \(n\) is the common 102 * length of {@code x} and {@code y}.</p> 103 * 104 * @param x Interpolating points array. 105 * @param y Interpolating values array. 106 * @return a fresh copy of the divided difference array. 107 * @throws MathIllegalArgumentException if the array lengths are different. 108 * @throws MathIllegalArgumentException if the number of points is less than 2. 109 * @throws MathIllegalArgumentException 110 * if {@code x} is not sorted in strictly increasing order. 111 */ 112 protected static double[] computeDividedDifference(final double[] x, final double[] y) 113 throws MathIllegalArgumentException { 114 PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true); 115 116 final double[] divdiff = y.clone(); // initialization 117 118 final int n = x.length; 119 final double[] a = new double [n]; 120 a[0] = divdiff[0]; 121 for (int i = 1; i < n; i++) { 122 for (int j = 0; j < n-i; j++) { 123 final double denominator = x[j+i] - x[j]; 124 divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator; 125 } 126 a[i] = divdiff[0]; 127 } 128 129 return a; 130 } 131 }