1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.analysis.integration.gauss; 23 24 import org.hipparchus.exception.MathIllegalArgumentException; 25 import org.hipparchus.util.Pair; 26 27 /** 28 * Factory that creates Gauss-type quadrature rule using Legendre polynomials. 29 * In this implementation, the lower and upper bounds of the natural interval 30 * of integration are -1 and 1, respectively. 31 * The Legendre polynomials are evaluated using the recurrence relation 32 * presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun"> 33 * Abramowitz and Stegun, 1964</a>. 34 * 35 */ 36 public class LegendreRuleFactory extends AbstractRuleFactory { 37 38 /** Empty constructor. 39 * <p> 40 * This constructor is not strictly necessary, but it prevents spurious 41 * javadoc warnings with JDK 18 and later. 42 * </p> 43 * @since 3.0 44 */ 45 public LegendreRuleFactory() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy 46 // nothing to do 47 } 48 49 /** {@inheritDoc} */ 50 @Override 51 protected Pair<double[], double[]> computeRule(int numberOfPoints) 52 throws MathIllegalArgumentException { 53 54 if (numberOfPoints == 1) { 55 // Break recursion. 56 return new Pair<>(new double[] { 0 } , new double[] { 2 }); 57 } 58 59 // find nodes as roots of Legendre polynomial 60 final Legendre p = new Legendre(numberOfPoints); 61 final double[] points = findRoots(numberOfPoints, p::ratio); 62 enforceSymmetry(points); 63 64 // compute weights 65 final double[] weights = new double[numberOfPoints]; 66 for (int i = 0; i <= numberOfPoints / 2; i++) { 67 final double c = points[i]; 68 final double[] pKpKm1 = p.pNpNm1(c); 69 final double d = numberOfPoints * (pKpKm1[1] - c * pKpKm1[0]); 70 weights[i] = 2 * (1 - c * c) / (d * d); 71 72 // symmetrical point 73 final int idx = numberOfPoints - i - 1; 74 weights[idx] = weights[i]; 75 76 } 77 78 return new Pair<>(points, weights); 79 80 } 81 82 /** Legendre polynomial. */ 83 private static class Legendre { 84 85 /** Degree. */ 86 private int degree; 87 88 /** Simple constructor. 89 * @param degree polynomial degree 90 */ 91 Legendre(int degree) { 92 this.degree = degree; 93 } 94 95 /** Compute ratio P(x)/P'(x). 96 * @param x point at which ratio must be computed 97 * @return ratio P(x)/P'(x) 98 */ 99 public double ratio(double x) { 100 double pm = 1; 101 double p = x; 102 double d = 1; 103 for (int n = 1; n < degree; n++) { 104 // apply recurrence relations (n+1) Pₙ₊₁(x) = (2n+1) x Pₙ(x) - n Pₙ₋₁(x) 105 // and P'ₙ₊₁(x) = (n+1) Pₙ(x) + x P'ₙ(x) 106 final double pp = (p * (x * (2 * n + 1)) - pm * n) / (n + 1); 107 d = p * (n + 1) + d * x; 108 pm = p; 109 p = pp; 110 } 111 return p / d; 112 } 113 114 /** Compute Pₙ(x) and Pₙ₋₁(x). 115 * @param x point at which polynomials are evaluated 116 * @return array containing Pₙ(x) at index 0 and Pₙ₋₁(x) at index 1 117 */ 118 private double[] pNpNm1(final double x) { 119 double[] p = { x, 1 }; 120 for (int n = 1; n < degree; n++) { 121 // apply recurrence relation (n+1) Pₙ₊₁(x) = (2n+1) x Pₙ(x) - n Pₙ₋₁(x) 122 final double pp = (p[0] * (x * (2 * n + 1)) - p[1] * n) / (n + 1); 123 p[1] = p[0]; 124 p[0] = pp; 125 } 126 return p; 127 } 128 129 } 130 131 }