1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.analysis.differentiation; 23 24 import org.hipparchus.analysis.MultivariateMatrixFunction; 25 26 /** Class representing the Jacobian of a multivariate vector function. 27 * <p> 28 * The rows iterate on the model functions while the columns iterate on the parameters; thus, 29 * the numbers of rows is equal to the dimension of the underlying function vector 30 * value and the number of columns is equal to the number of free parameters of 31 * the underlying function. 32 * </p> 33 */ 34 public class JacobianFunction implements MultivariateMatrixFunction { 35 36 /** Underlying vector-valued function. */ 37 private final MultivariateDifferentiableVectorFunction f; 38 39 /** Simple constructor. 40 * @param f underlying vector-valued function 41 */ 42 public JacobianFunction(final MultivariateDifferentiableVectorFunction f) { 43 this.f = f; 44 } 45 46 /** {@inheritDoc} */ 47 @Override 48 public double[][] value(double[] point) { 49 50 // set up parameters 51 final DSFactory factory = new DSFactory(point.length, 1); 52 final DerivativeStructure[] dsX = new DerivativeStructure[point.length]; 53 for (int i = 0; i < point.length; ++i) { 54 dsX[i] = factory.variable(i, point[i]); 55 } 56 57 // compute the derivatives 58 final DerivativeStructure[] dsY = f.value(dsX); 59 60 // extract the Jacobian 61 final double[][] y = new double[dsY.length][point.length]; 62 final int[] orders = new int[point.length]; 63 for (int i = 0; i < dsY.length; ++i) { 64 for (int j = 0; j < point.length; ++j) { 65 orders[j] = 1; 66 y[i][j] = dsY[i].getPartialDerivative(orders); 67 orders[j] = 0; 68 } 69 } 70 71 return y; 72 73 } 74 75 }