1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 package org.hipparchus.stat.correlation;
23
24 import org.hipparchus.UnitTestUtils;
25 import org.hipparchus.linear.Array2DRowRealMatrix;
26 import org.hipparchus.linear.RealMatrix;
27 import org.hipparchus.random.ISAACRandom;
28 import org.junit.Assert;
29 import org.junit.Test;
30
31 public class StorelessCovarianceTest {
32
33 protected final double[] longleyData = new double[] {
34 60323,83.0,234289,2356,1590,107608,1947,
35 61122,88.5,259426,2325,1456,108632,1948,
36 60171,88.2,258054,3682,1616,109773,1949,
37 61187,89.5,284599,3351,1650,110929,1950,
38 63221,96.2,328975,2099,3099,112075,1951,
39 63639,98.1,346999,1932,3594,113270,1952,
40 64989,99.0,365385,1870,3547,115094,1953,
41 63761,100.0,363112,3578,3350,116219,1954,
42 66019,101.2,397469,2904,3048,117388,1955,
43 67857,104.6,419180,2822,2857,118734,1956,
44 68169,108.4,442769,2936,2798,120445,1957,
45 66513,110.8,444546,4681,2637,121950,1958,
46 68655,112.6,482704,3813,2552,123366,1959,
47 69564,114.2,502601,3931,2514,125368,1960,
48 69331,115.7,518173,4806,2572,127852,1961,
49 70551,116.9,554894,4007,2827,130081,1962
50 };
51
52 protected final double[] swissData = new double[] {
53 80.2,17.0,15,12,9.96,
54 83.1,45.1,6,9,84.84,
55 92.5,39.7,5,5,93.40,
56 85.8,36.5,12,7,33.77,
57 76.9,43.5,17,15,5.16,
58 76.1,35.3,9,7,90.57,
59 83.8,70.2,16,7,92.85,
60 92.4,67.8,14,8,97.16,
61 82.4,53.3,12,7,97.67,
62 82.9,45.2,16,13,91.38,
63 87.1,64.5,14,6,98.61,
64 64.1,62.0,21,12,8.52,
65 66.9,67.5,14,7,2.27,
66 68.9,60.7,19,12,4.43,
67 61.7,69.3,22,5,2.82,
68 68.3,72.6,18,2,24.20,
69 71.7,34.0,17,8,3.30,
70 55.7,19.4,26,28,12.11,
71 54.3,15.2,31,20,2.15,
72 65.1,73.0,19,9,2.84,
73 65.5,59.8,22,10,5.23,
74 65.0,55.1,14,3,4.52,
75 56.6,50.9,22,12,15.14,
76 57.4,54.1,20,6,4.20,
77 72.5,71.2,12,1,2.40,
78 74.2,58.1,14,8,5.23,
79 72.0,63.5,6,3,2.56,
80 60.5,60.8,16,10,7.72,
81 58.3,26.8,25,19,18.46,
82 65.4,49.5,15,8,6.10,
83 75.5,85.9,3,2,99.71,
84 69.3,84.9,7,6,99.68,
85 77.3,89.7,5,2,100.00,
86 70.5,78.2,12,6,98.96,
87 79.4,64.9,7,3,98.22,
88 65.0,75.9,9,9,99.06,
89 92.2,84.6,3,3,99.46,
90 79.3,63.1,13,13,96.83,
91 70.4,38.4,26,12,5.62,
92 65.7,7.7,29,11,13.79,
93 72.7,16.7,22,13,11.22,
94 64.4,17.6,35,32,16.92,
95 77.6,37.6,15,7,4.97,
96 67.6,18.7,25,7,8.65,
97 35.0,1.2,37,53,42.34,
98 44.7,46.6,16,29,50.43,
99 42.8,27.7,22,29,58.33
100 };
101
102 protected final double[][] longleyDataSimple = {
103 {60323, 83.0},
104 {61122,88.5},
105 {60171, 88.2},
106 {61187, 89.5},
107 {63221, 96.2},
108 {63639, 98.1},
109 {64989, 99.0},
110 {63761, 100.0},
111 {66019, 101.2},
112 {67857, 104.6},
113 {68169, 108.4},
114 {66513, 110.8},
115 {68655, 112.6},
116 {69564, 114.2},
117 {69331, 115.7},
118 {70551, 116.9}
119 };
120
121 @Test
122 public void testLonglySimpleVar(){
123 double rCov = 12333921.73333333246;
124 StorelessBivariateCovariance cov = new StorelessBivariateCovariance();
125 for(int i=0;i<longleyDataSimple.length;i++){
126 cov.increment(longleyDataSimple[i][0],longleyDataSimple[i][0]);
127 }
128 UnitTestUtils.assertEquals("simple covariance test", rCov, cov.getResult(), 10E-7);
129 }
130
131 @Test
132 public void testLonglySimpleCov(){
133 double rCov = 36796.660000;
134 StorelessBivariateCovariance cov = new StorelessBivariateCovariance();
135 for(int i=0;i<longleyDataSimple.length;i++){
136 cov.increment(longleyDataSimple[i][0], longleyDataSimple[i][1]);
137 }
138 UnitTestUtils.assertEquals("simple covariance test", rCov, cov.getResult(), 10E-7);
139 }
140
141
142
143
144
145
146
147
148
149
150
151 @Test
152 public void testLonglyByRow() {
153 RealMatrix matrix = createRealMatrix(longleyData, 16, 7);
154
155 double[] rData = new double[] {
156 12333921.73333333246, 3.679666000000000e+04, 343330206.333333313,
157 1649102.666666666744, 1117681.066666666651, 23461965.733333334, 16240.93333333333248,
158 36796.66000000000, 1.164576250000000e+02, 1063604.115416667,
159 6258.666250000000, 3490.253750000000, 73503.000000000, 50.92333333333334,
160 343330206.33333331347, 1.063604115416667e+06, 9879353659.329166412,
161 56124369.854166664183, 30880428.345833335072, 685240944.600000024, 470977.90000000002328,
162 1649102.66666666674, 6.258666250000000e+03, 56124369.854166664,
163 873223.429166666698, -115378.762499999997, 4462741.533333333, 2973.03333333333330,
164 1117681.06666666665, 3.490253750000000e+03, 30880428.345833335,
165 -115378.762499999997, 484304.095833333326, 1764098.133333333, 1382.43333333333339,
166 23461965.73333333433, 7.350300000000000e+04, 685240944.600000024,
167 4462741.533333333209, 1764098.133333333302, 48387348.933333330, 32917.40000000000146,
168 16240.93333333333, 5.092333333333334e+01, 470977.900000000,
169 2973.033333333333, 1382.433333333333, 32917.40000000, 22.66666666666667
170 };
171
172 StorelessCovariance covMatrix = new StorelessCovariance(7);
173 for(int i=0;i<matrix.getRowDimension();i++){
174 covMatrix.increment(matrix.getRow(i));
175 }
176
177 RealMatrix covarianceMatrix = covMatrix.getCovarianceMatrix();
178
179 UnitTestUtils.assertEquals("covariance matrix", createRealMatrix(rData, 7, 7), covarianceMatrix, 10E-7);
180
181 }
182
183
184
185
186
187 @Test
188 public void testSwissFertilityByRow() {
189 RealMatrix matrix = createRealMatrix(swissData, 47, 5);
190
191 double[] rData = new double[] {
192 156.0424976873265, 100.1691489361702, -64.36692876965772, -79.7295097132285, 241.5632030527289,
193 100.169148936170251, 515.7994172062905, -124.39283071230344, -139.6574005550416, 379.9043755781684,
194 -64.3669287696577, -124.3928307123034, 63.64662349676226, 53.5758556891767, -190.5606105457909,
195 -79.7295097132285, -139.6574005550416, 53.57585568917669, 92.4560592044403, -61.6988297872340,
196 241.5632030527289, 379.9043755781684, -190.56061054579092, -61.6988297872340, 1739.2945371877890
197 };
198
199 StorelessCovariance covMatrix = new StorelessCovariance(5);
200 for(int i=0;i<matrix.getRowDimension();i++){
201 covMatrix.increment(matrix.getRow(i));
202 }
203
204 RealMatrix covarianceMatrix = covMatrix.getCovarianceMatrix();
205
206 UnitTestUtils.assertEquals("covariance matrix", createRealMatrix(rData, 5, 5), covarianceMatrix, 10E-13);
207 }
208
209
210
211
212 @Test
213 public void testSymmetry() {
214 RealMatrix matrix = createRealMatrix(swissData, 47, 5);
215
216 final int dimension = 5;
217 StorelessCovariance storelessCov = new StorelessCovariance(dimension);
218 for(int i=0;i<matrix.getRowDimension();i++){
219 storelessCov.increment(matrix.getRow(i));
220 }
221
222 double[][] covMatrix = storelessCov.getData();
223 for (int i = 0; i < dimension; i++) {
224 for (int j = i; j < dimension; j++) {
225 Assert.assertEquals(covMatrix[i][j], covMatrix[j][i], 10e-9);
226 }
227 }
228 }
229
230
231
232
233
234
235 @Test
236 public void testEquivalence() {
237 int num_sets = 2;
238 StorelessBivariateCovariance cov = new StorelessBivariateCovariance();
239 StorelessBivariateCovariance chk = new StorelessBivariateCovariance();
240
241 ISAACRandom rand = new ISAACRandom(10L);
242 for (int s = 0; s < num_sets; s++) {
243 StorelessBivariateCovariance covs = new StorelessBivariateCovariance();
244 for (int i = 0; i < 5; i++) {
245 double x = rand.nextDouble();
246 double y = rand.nextDouble();
247 covs.increment(x, y);
248 cov.increment(x, y);
249 }
250 chk.append(covs);
251 }
252
253 UnitTestUtils.assertEquals("covariance subset test", chk.getResult(), cov.getResult(), 10E-7);
254 }
255
256 protected RealMatrix createRealMatrix(double[] data, int nRows, int nCols) {
257 double[][] matrixData = new double[nRows][nCols];
258 int ptr = 0;
259 for (int i = 0; i < nRows; i++) {
260 System.arraycopy(data, ptr, matrixData[i], 0, nCols);
261 ptr += nCols;
262 }
263 return new Array2DRowRealMatrix(matrixData);
264 }
265
266
267 }
268