View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.optim.nonlinear.vector.leastsquares;
23  
24  import static org.hamcrest.CoreMatchers.is;
25  import static org.hamcrest.CoreMatchers.not;
26  import static org.hamcrest.CoreMatchers.sameInstance;
27  
28  import java.io.IOException;
29  import java.util.Arrays;
30  
31  import org.hamcrest.MatcherAssert;
32  import org.hipparchus.analysis.MultivariateMatrixFunction;
33  import org.hipparchus.analysis.MultivariateVectorFunction;
34  import org.hipparchus.exception.MathIllegalArgumentException;
35  import org.hipparchus.exception.MathIllegalStateException;
36  import org.hipparchus.geometry.euclidean.twod.Vector2D;
37  import org.hipparchus.linear.Array2DRowRealMatrix;
38  import org.hipparchus.linear.ArrayRealVector;
39  import org.hipparchus.linear.BlockRealMatrix;
40  import org.hipparchus.linear.DiagonalMatrix;
41  import org.hipparchus.linear.RealMatrix;
42  import org.hipparchus.linear.RealVector;
43  import org.hipparchus.optim.ConvergenceChecker;
44  import org.hipparchus.optim.SimpleVectorValueChecker;
45  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum;
46  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
47  import org.hipparchus.util.FastMath;
48  import org.hipparchus.util.Pair;
49  import org.junit.Assert;
50  import org.junit.Test;
51  
52  /**
53   * Some of the unit tests are re-implementations of the MINPACK <a
54   * href="http://www.netlib.org/minpack/ex/file17">file17</a> and <a
55   * href="http://www.netlib.org/minpack/ex/file22">file22</a> test files. The
56   * redistribution policy for MINPACK is available <a href="http://www.netlib.org/minpack/disclaimer">here</a>.
57   * <p/>
58   * <T> Concrete implementation of an optimizer.
59   *
60   */
61  public abstract class AbstractLeastSquaresOptimizerAbstractTest {
62  
63      /** default absolute tolerance of comparisons */
64      public static final double TOl = 1e-10;
65  
66      public LeastSquaresBuilder base() {
67          return new LeastSquaresBuilder()
68                  .checkerPair(new SimpleVectorValueChecker(1e-6, 1e-6))
69                  .maxEvaluations(100)
70                  .maxIterations(getMaxIterations());
71      }
72  
73      public LeastSquaresBuilder builder(CircleVectorial c) {
74          final double[] weights = new double[c.getN()];
75          Arrays.fill(weights, 1.0);
76          return base()
77                  .model(c.getModelFunction(), c.getModelFunctionJacobian())
78                  .target(new double[c.getN()])
79                  .weight(new DiagonalMatrix(weights));
80      }
81  
82      public LeastSquaresBuilder builder(StatisticalReferenceDataset dataset) {
83          StatisticalReferenceDataset.LeastSquaresProblem problem
84                  = dataset.getLeastSquaresProblem();
85          final double[] weights = new double[dataset.getNumObservations()];
86          Arrays.fill(weights, 1.0);
87          return base()
88                  .model(problem.getModelFunction(), problem.getModelFunctionJacobian())
89                  .target(dataset.getData()[1])
90                  .weight(new DiagonalMatrix(weights))
91                  .start(dataset.getStartingPoint(0));
92      }
93  
94      public void fail(LeastSquaresOptimizer optimizer) {
95          Assert.fail("Expected Exception from: " + optimizer.toString());
96      }
97  
98      /**
99       * Check the value of a vector.
100      * @param tolerance the absolute tolerance of comparisons
101      * @param actual the vector to test
102      * @param expected the expected values
103      */
104     public void assertEquals(double tolerance, RealVector actual, double... expected){
105         for (int i = 0; i < expected.length; i++) {
106             Assert.assertEquals(expected[i], actual.getEntry(i), tolerance);
107         }
108         Assert.assertEquals(expected.length, actual.getDimension());
109     }
110 
111     /**
112      * @return the default number of allowed iterations (which will be used when not
113      *         specified otherwise).
114      */
115     public abstract int getMaxIterations();
116 
117     /**
118      * Get an instance of the optimizer under test.
119      *
120      * @return the subject under test.
121      */
122     public abstract LeastSquaresOptimizer getOptimizer();
123 
124     /**
125      * The subject under test.
126      */
127     public final LeastSquaresOptimizer optimizer = this.getOptimizer();
128 
129     @Test
130     public void testGetIterations() {
131         LeastSquaresProblem lsp = base()
132                 .target(new double[]{1})
133                 .weight(new DiagonalMatrix(new double[]{1}))
134                 .start(new double[]{3})
135                 .model(new MultivariateJacobianFunction() {
136                     public Pair<RealVector, RealMatrix> value(final RealVector point) {
137                         return new Pair<RealVector, RealMatrix>(
138                                 new ArrayRealVector(
139                                         new double[]{
140                                                 FastMath.pow(point.getEntry(0), 4)
141                                         },
142                                         false),
143                                 new Array2DRowRealMatrix(
144                                         new double[][]{
145                                                 {0.25 * FastMath.pow(point.getEntry(0), 3)}
146                                         },
147                                         false)
148                         );
149                     }
150                 })
151                 .build();
152 
153         Optimum optimum = optimizer.optimize(lsp);
154 
155         //TODO more specific test? could pass with 'return 1;'
156         Assert.assertTrue(optimum.getIterations() > 0);
157     }
158 
159     @Test
160     public void testTrivial() {
161         LinearProblem problem
162                 = new LinearProblem(new double[][]{{2}},
163                 new double[]{3});
164         LeastSquaresProblem ls = problem.getBuilder().build();
165 
166         Optimum optimum = optimizer.optimize(ls);
167 
168         Assert.assertEquals(0, optimum.getRMS(), TOl);
169         assertEquals(TOl, optimum.getPoint(), 1.5);
170         Assert.assertEquals(0.0, optimum.getResiduals().getEntry(0), TOl);
171     }
172 
173     @Test
174     public void testQRColumnsPermutation() {
175         LinearProblem problem
176                 = new LinearProblem(new double[][]{{1, -1}, {0, 2}, {1, -2}},
177                 new double[]{4, 6, 1});
178 
179         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
180 
181         Assert.assertEquals(0, optimum.getRMS(), TOl);
182         assertEquals(TOl, optimum.getPoint(), 7, 3);
183         assertEquals(TOl, optimum.getResiduals(), 0, 0, 0);
184     }
185 
186     @Test
187     public void testNoDependency() {
188         LinearProblem problem = new LinearProblem(new double[][]{
189                 {2, 0, 0, 0, 0, 0},
190                 {0, 2, 0, 0, 0, 0},
191                 {0, 0, 2, 0, 0, 0},
192                 {0, 0, 0, 2, 0, 0},
193                 {0, 0, 0, 0, 2, 0},
194                 {0, 0, 0, 0, 0, 2}
195         }, new double[]{0, 1.1, 2.2, 3.3, 4.4, 5.5});
196 
197         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
198 
199         Assert.assertEquals(0, optimum.getRMS(), TOl);
200         for (int i = 0; i < problem.target.length; ++i) {
201             Assert.assertEquals(0.55 * i, optimum.getPoint().getEntry(i), TOl);
202         }
203     }
204 
205     @Test
206     public void testOneSet() {
207         LinearProblem problem = new LinearProblem(new double[][]{
208                 {1, 0, 0},
209                 {-1, 1, 0},
210                 {0, -1, 1}
211         }, new double[]{1, 1, 1});
212 
213         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
214 
215         Assert.assertEquals(0, optimum.getRMS(), TOl);
216         assertEquals(TOl, optimum.getPoint(), 1, 2, 3);
217     }
218 
219     @Test
220     public void testTwoSets() {
221         double epsilon = 1e-7;
222         LinearProblem problem = new LinearProblem(new double[][]{
223                 {2, 1, 0, 4, 0, 0},
224                 {-4, -2, 3, -7, 0, 0},
225                 {4, 1, -2, 8, 0, 0},
226                 {0, -3, -12, -1, 0, 0},
227                 {0, 0, 0, 0, epsilon, 1},
228                 {0, 0, 0, 0, 1, 1}
229         }, new double[]{2, -9, 2, 2, 1 + epsilon * epsilon, 2});
230 
231         Optimum optimum = optimizer.optimize(problem.getBuilder().build());
232 
233         Assert.assertEquals(0, optimum.getRMS(), TOl);
234         assertEquals(TOl, optimum.getPoint(), 3, 4, -1, -2, 1 + epsilon, 1 - epsilon);
235     }
236 
237     @Test
238     public void testNonInvertible() throws Exception {
239         try {
240             LinearProblem problem = new LinearProblem(new double[][]{
241                 {1, 2, -3},
242                 {2, 1, 3},
243                 {-3, 0, -9}
244             }, new double[]{1, 1, 1});
245 
246             optimizer.optimize(problem.getBuilder().build());
247 
248             fail(optimizer);
249         } catch (MathIllegalArgumentException miae) {
250             // expected
251         } catch (MathIllegalStateException mise) {
252             // expected
253         }
254     }
255 
256     @Test
257     public void testIllConditioned() {
258         LinearProblem problem1 = new LinearProblem(new double[][]{
259                 {10, 7, 8, 7},
260                 {7, 5, 6, 5},
261                 {8, 6, 10, 9},
262                 {7, 5, 9, 10}
263         }, new double[]{32, 23, 33, 31});
264         final double[] start = {0, 1, 2, 3};
265 
266         Optimum optimum = optimizer
267                 .optimize(problem1.getBuilder().start(start).build());
268 
269         Assert.assertEquals(0, optimum.getRMS(), TOl);
270         assertEquals(TOl, optimum.getPoint(), 1, 1, 1, 1);
271 
272         LinearProblem problem2 = new LinearProblem(new double[][]{
273                 {10.00, 7.00, 8.10, 7.20},
274                 {7.08, 5.04, 6.00, 5.00},
275                 {8.00, 5.98, 9.89, 9.00},
276                 {6.99, 4.99, 9.00, 9.98}
277         }, new double[]{32, 23, 33, 31});
278 
279         optimum = optimizer.optimize(problem2.getBuilder().start(start).build());
280 
281         Assert.assertEquals(0, optimum.getRMS(), TOl);
282         assertEquals(1e-8, optimum.getPoint(), -81, 137, -34, 22);
283     }
284 
285     @Test
286     public void testMoreEstimatedParametersSimple() {
287         LinearProblem problem = new LinearProblem(new double[][]{
288                 {3, 2, 0, 0},
289                 {0, 1, -1, 1},
290                 {2, 0, 1, 0}
291         }, new double[]{7, 3, 5});
292 
293         Optimum optimum = optimizer
294                 .optimize(problem.getBuilder().start(new double[]{7, 6, 5, 4}).build());
295 
296         Assert.assertEquals(0, optimum.getRMS(), TOl);
297     }
298 
299     @Test
300     public void testMoreEstimatedParametersUnsorted() {
301         LinearProblem problem = new LinearProblem(new double[][]{
302                 {1, 1, 0, 0, 0, 0},
303                 {0, 0, 1, 1, 1, 0},
304                 {0, 0, 0, 0, 1, -1},
305                 {0, 0, -1, 1, 0, 1},
306                 {0, 0, 0, -1, 1, 0}
307         }, new double[]{3, 12, -1, 7, 1});
308 
309         Optimum optimum = optimizer.optimize(
310                 problem.getBuilder().start(new double[]{2, 2, 2, 2, 2, 2}).build());
311 
312         Assert.assertEquals(0, optimum.getRMS(), TOl);
313         RealVector point = optimum.getPoint();
314         //the first two elements are under constrained
315         //check first two elements obey the constraint: sum to 3
316         Assert.assertEquals(3, point.getEntry(0) + point.getEntry(1), TOl);
317         //#constrains = #states fro the last 4 elements
318         assertEquals(TOl, point.getSubVector(2, 4), 3, 4, 5, 6);
319     }
320 
321     @Test
322     public void testRedundantEquations() {
323         LinearProblem problem = new LinearProblem(new double[][]{
324                 {1, 1},
325                 {1, -1},
326                 {1, 3}
327         }, new double[]{3, 1, 5});
328 
329         Optimum optimum = optimizer
330                 .optimize(problem.getBuilder().start(new double[]{1, 1}).build());
331 
332         Assert.assertEquals(0, optimum.getRMS(), TOl);
333         assertEquals(TOl, optimum.getPoint(), 2, 1);
334     }
335 
336     @Test
337     public void testInconsistentEquations() {
338         LinearProblem problem = new LinearProblem(new double[][]{
339                 {1, 1},
340                 {1, -1},
341                 {1, 3}
342         }, new double[]{3, 1, 4});
343 
344         Optimum optimum = optimizer
345                 .optimize(problem.getBuilder().start(new double[]{1, 1}).build());
346 
347         //TODO what is this actually testing?
348         Assert.assertTrue(optimum.getRMS() > 0.1);
349     }
350 
351     @Test
352     public void testInconsistentSizes1() {
353         try {
354             LinearProblem problem
355                     = new LinearProblem(new double[][]{{1, 0},
356                     {0, 1}},
357                     new double[]{-1, 1});
358 
359             //TODO why is this part here? hasn't it been tested already?
360             Optimum optimum = optimizer.optimize(problem.getBuilder().build());
361 
362             Assert.assertEquals(0, optimum.getRMS(), TOl);
363             assertEquals(TOl, optimum.getPoint(), -1, 1);
364 
365             //TODO move to builder test
366             optimizer.optimize(
367                     problem.getBuilder().weight(new DiagonalMatrix(new double[]{1})).build());
368 
369             fail(optimizer);
370         } catch (MathIllegalArgumentException e) {
371             //expected
372         }
373     }
374 
375     @Test
376     public void testInconsistentSizes2() {
377         try {
378             LinearProblem problem
379                     = new LinearProblem(new double[][]{{1, 0}, {0, 1}},
380                     new double[]{-1, 1});
381 
382             Optimum optimum = optimizer.optimize(problem.getBuilder().build());
383 
384             Assert.assertEquals(0, optimum.getRMS(), TOl);
385             assertEquals(TOl, optimum.getPoint(), -1, 1);
386 
387             //TODO move to builder test
388             optimizer.optimize(
389                     problem.getBuilder()
390                             .target(new double[]{1})
391                             .weight(new DiagonalMatrix(new double[]{1}))
392                             .build()
393             );
394 
395             fail(optimizer);
396         } catch (MathIllegalArgumentException e) {
397             //expected
398         }
399     }
400 
401     @Test
402     public void testCircleFitting() {
403         CircleVectorial circle = new CircleVectorial();
404         circle.addPoint(30, 68);
405         circle.addPoint(50, -6);
406         circle.addPoint(110, -20);
407         circle.addPoint(35, 15);
408         circle.addPoint(45, 97);
409         final double[] start = {98.680, 47.345};
410 
411         Optimum optimum = optimizer.optimize(builder(circle).start(start).build());
412 
413         Assert.assertTrue(optimum.getEvaluations() < 10);
414 
415         double rms = optimum.getRMS();
416         Assert.assertEquals(1.768262623567235, FastMath.sqrt(circle.getN()) * rms, TOl);
417 
418         Vector2D center = new Vector2D(optimum.getPoint().getEntry(0), optimum.getPoint().getEntry(1));
419         Assert.assertEquals(69.96016176931406, circle.getRadius(center), 1e-6);
420         Assert.assertEquals(96.07590211815305, center.getX(), 1e-6);
421         Assert.assertEquals(48.13516790438953, center.getY(), 1e-6);
422 
423         double[][] cov = optimum.getCovariances(1e-14).getData();
424         Assert.assertEquals(1.839, cov[0][0], 0.001);
425         Assert.assertEquals(0.731, cov[0][1], 0.001);
426         Assert.assertEquals(cov[0][1], cov[1][0], 1e-14);
427         Assert.assertEquals(0.786, cov[1][1], 0.001);
428 
429         // add perfect measurements and check formal errors are reduced
430         double r = circle.getRadius(center);
431         for (double d = 0; d < 2 * FastMath.PI; d += 0.01) {
432             circle.addPoint(center.getX() + r * FastMath.cos(d), center.getY() + r * FastMath.sin(d));
433         }
434 
435         double[] weights = new double[circle.getN()];
436         Arrays.fill(weights, 2);
437 
438         optimum = optimizer.optimize(
439                 builder(circle).weight(new DiagonalMatrix(weights)).start(start).build());
440 
441         cov = optimum.getCovariances(1e-14).getData();
442         Assert.assertEquals(0.0016, cov[0][0], 0.001);
443         Assert.assertEquals(3.2e-7, cov[0][1], 1e-9);
444         Assert.assertEquals(cov[0][1], cov[1][0], 1e-14);
445         Assert.assertEquals(0.0016, cov[1][1], 0.001);
446     }
447 
448     @Test
449     public void testCircleFittingBadInit() {
450         CircleVectorial circle = new CircleVectorial();
451         double[][] points = circlePoints;
452         double[] weights = new double[points.length];
453         final double[] start = {-12, -12};
454         Arrays.fill(weights, 2);
455         for (int i = 0; i < points.length; ++i) {
456             circle.addPoint(points[i][0], points[i][1]);
457         }
458 
459         Optimum optimum = optimizer.optimize(builder(circle).weight(new DiagonalMatrix(weights)).start(start).build());
460 
461         Vector2D center = new Vector2D(optimum.getPoint().getEntry(0), optimum.getPoint().getEntry(1));
462         Assert.assertTrue(optimum.getEvaluations() < 25);
463         Assert.assertEquals(0.043, optimum.getRMS(), 1e-3);
464         Assert.assertEquals(0.292235, circle.getRadius(center), 1e-6);
465         Assert.assertEquals(-0.151738, center.getX(), 1e-6);
466         Assert.assertEquals(0.2075001, center.getY(), 1e-6);
467     }
468 
469     @Test
470     public void testCircleFittingGoodInit() {
471         CircleVectorial circle = new CircleVectorial();
472         double[][] points = circlePoints;
473         double[] weights = new double[points.length];
474         Arrays.fill(weights, 2);
475         for (int i = 0; i < points.length; ++i) {
476             circle.addPoint(points[i][0], points[i][1]);
477         }
478         final double[] start = {0, 0};
479 
480         Optimum optimum = optimizer.optimize(
481                 builder(circle).weight(new DiagonalMatrix(weights)).start(start).build());
482 
483         assertEquals(1e-6, optimum.getPoint(), -0.1517383071957963, 0.2074999736353867);
484         Assert.assertEquals(0.04268731682389561, optimum.getRMS(), 1e-8);
485     }
486 
487     private final double[][] circlePoints = new double[][]{
488             {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724},
489             {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619},
490             {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832},
491             {-0.075133, 0.483271}, {-0.007759, 0.452680}, {0.060071, 0.410235},
492             {0.103037, 0.341076}, {0.118438, 0.273884}, {0.131293, 0.192201},
493             {0.115869, 0.129797}, {0.072223, 0.058396}, {0.022884, 0.000718},
494             {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862},
495             {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526},
496             {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398},
497             {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513},
498             {-0.135352, 0.478186}, {-0.061221, 0.483371}, {0.003711, 0.422737},
499             {0.065054, 0.375830}, {0.108108, 0.297099}, {0.123882, 0.222850},
500             {0.117729, 0.134382}, {0.085195, 0.056820}, {0.029800, -0.019138},
501             {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578},
502             {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926},
503             {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068},
504             {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119},
505             {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560},
506             {0.001375, 0.434937}, {0.082787, 0.385806}, {0.115490, 0.323807},
507             {0.141089, 0.223450}, {0.138693, 0.131703}, {0.126415, 0.049174},
508             {0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635},
509             {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251},
510             {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597},
511             {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428},
512             {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380},
513             {-0.071754, 0.516264}, {0.015942, 0.472802}, {0.076608, 0.419077},
514             {0.127673, 0.330264}, {0.159951, 0.262150}, {0.153530, 0.172681},
515             {0.140653, 0.089229}, {0.078666, 0.024981}, {0.023807, -0.037022},
516             {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526}
517     };
518 
519     public void doTestStRD(final StatisticalReferenceDataset dataset,
520                            final LeastSquaresOptimizer optimizer,
521                            final double errParams,
522                            final double errParamsSd) {
523 
524         final Optimum optimum = optimizer.optimize(builder(dataset).build());
525 
526         final RealVector actual = optimum.getPoint();
527         for (int i = 0; i < actual.getDimension(); i++) {
528             double expected = dataset.getParameter(i);
529             double delta = FastMath.abs(errParams * expected);
530             Assert.assertEquals(dataset.getName() + ", param #" + i,
531                     expected, actual.getEntry(i), delta);
532         }
533     }
534 
535     @Test
536     public void testKirby2() throws IOException {
537         doTestStRD(StatisticalReferenceDatasetFactory.createKirby2(), optimizer, 1E-7, 1E-7);
538     }
539 
540     @Test
541     public void testHahn1() throws IOException {
542         doTestStRD(StatisticalReferenceDatasetFactory.createHahn1(), optimizer, 1E-7, 1E-4);
543     }
544 
545     @Test
546     public void testPointCopy() {
547         LinearProblem problem = new LinearProblem(new double[][]{
548                 {1, 0, 0},
549                 {-1, 1, 0},
550                 {0, -1, 1}
551         }, new double[]{1, 1, 1});
552         //mutable boolean
553         final boolean[] checked = {false};
554 
555         final LeastSquaresBuilder builder = problem.getBuilder()
556                 .checker(new ConvergenceChecker<Evaluation>() {
557                     public boolean converged(int iteration, Evaluation previous, Evaluation current) {
558                         MatcherAssert.assertThat(
559                                 previous.getPoint(),
560                                 not(sameInstance(current.getPoint())));
561                         Assert.assertArrayEquals(new double[3], previous.getPoint().toArray(), 0);
562                         Assert.assertArrayEquals(new double[] {1, 2, 3}, current.getPoint().toArray(), TOl);
563                         checked[0] = true;
564                         return true;
565                     }
566                 });
567         optimizer.optimize(builder.build());
568 
569         MatcherAssert.assertThat(checked[0], is(true));
570     }
571 
572     class LinearProblem {
573         private final RealMatrix factors;
574         private final double[] target;
575 
576         public LinearProblem(double[][] factors, double[] target) {
577             this.factors = new BlockRealMatrix(factors);
578             this.target = target;
579         }
580 
581         public double[] getTarget() {
582             return target;
583         }
584 
585         public MultivariateVectorFunction getModelFunction() {
586             return new MultivariateVectorFunction() {
587                 public double[] value(double[] params) {
588                     return factors.operate(params);
589                 }
590             };
591         }
592 
593         public MultivariateMatrixFunction getModelFunctionJacobian() {
594             return new MultivariateMatrixFunction() {
595                 public double[][] value(double[] params) {
596                     return factors.getData();
597                 }
598             };
599         }
600 
601         public LeastSquaresBuilder getBuilder() {
602             final double[] weights = new double[target.length];
603             Arrays.fill(weights, 1.0);
604             return base()
605                     .model(getModelFunction(), getModelFunctionJacobian())
606                     .target(target)
607                     .weight(new DiagonalMatrix(weights))
608                     .start(new double[factors.getColumnDimension()]);
609         }
610     }
611 }