View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.ode;
24  
25  import org.hipparchus.util.FastMath;
26  
27  /**
28   * This class is used in the junit tests for the ODE integrators.
29  
30   * <p>This specific problem is the following differential equation :
31   * <pre>
32   *    y1'' = -y1/r^3  y1 (0) = 1-e  y1' (0) = 0
33   *    y2'' = -y2/r^3  y2 (0) = 0    y2' (0) =sqrt((1+e)/(1-e))
34   *    r = sqrt (y1^2 + y2^2), e = 0.9
35   * </pre>
36   * This is a two-body problem in the plane which can be solved by
37   * Kepler's equation
38   * <pre>
39   *   y1 (t) = ...
40   * </pre>
41   * </p>
42  
43   */
44  public class TestProblem3 extends TestProblemAbstract {
45  
46      /** Eccentricity */
47      double e;
48  
49      /**
50       * Simple constructor.
51       * @param e eccentricity
52       */
53      public TestProblem3(double e) {
54          super(0.0, new double[] { 1 - e, 0, 0, FastMath.sqrt((1+e)/(1-e)) }, 20.0,
55                new double[] { 1.0, 1.0, 1.0, 1.0 });
56          this.e = e;
57      }
58  
59      /**
60       * Simple constructor.
61       */
62      public TestProblem3() {
63          this(0.1);
64      }
65  
66      @Override
67      public double[] doComputeDerivatives(double t, double[] y) {
68  
69          final  double[] yDot = new double[getDimension()];
70  
71          // current radius
72          double r2 = y[0] * y[0] + y[1] * y[1];
73          double invR3 = 1 / (r2 * FastMath.sqrt(r2));
74  
75          // compute the derivatives
76          yDot[0] = y[2];
77          yDot[1] = y[3];
78          yDot[2] = -invR3  * y[0];
79          yDot[3] = -invR3  * y[1];
80  
81          return yDot;
82  
83      }
84  
85      @Override
86      public double[] computeTheoreticalState(double t) {
87  
88          // solve Kepler's equation
89          double E = t;
90          double d = 0;
91          double corr = 999.0;
92          for (int i = 0; (i < 50) && (FastMath.abs(corr) > 1.0e-12); ++i) {
93              double f2  = e * FastMath.sin(E);
94              double f0  = d - f2;
95              double f1  = 1 - e * FastMath.cos(E);
96              double f12 = f1 + f1;
97              corr  = f0 * f12 / (f1 * f12 - f0 * f2);
98              d -= corr;
99              E = t + d;
100         }
101 
102         double cosE = FastMath.cos(E);
103         double sinE = FastMath.sin(E);
104 
105         double[] y = new double[getDimension()];
106         y[0] = cosE - e;
107         y[1] = FastMath.sqrt(1 - e * e) * sinE;
108         y[2] = -sinE / (1 - e * cosE);
109         y[3] = FastMath.sqrt(1 - e * e) * cosE / (1 - e * cosE);
110 
111         return y;
112     }
113 
114 }