View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.fitting;
23  
24  import org.hipparchus.exception.MathIllegalArgumentException;
25  import org.hipparchus.exception.MathIllegalStateException;
26  import org.junit.Assert;
27  import org.junit.Test;
28  
29  /**
30   * Tests {@link GaussianCurveFitter}.
31   *
32   */
33  public class GaussianCurveFitterTest {
34      /** Good data. */
35      protected static final double[][] DATASET1 = new double[][] {
36          {4.0254623,  531026.0},
37          {4.02804905, 664002.0},
38          {4.02934242, 787079.0},
39          {4.03128248, 984167.0},
40          {4.03386923, 1294546.0},
41          {4.03580929, 1560230.0},
42          {4.03839603, 1887233.0},
43          {4.0396894,  2113240.0},
44          {4.04162946, 2375211.0},
45          {4.04421621, 2687152.0},
46          {4.04550958, 2862644.0},
47          {4.04744964, 3078898.0},
48          {4.05003639, 3327238.0},
49          {4.05132976, 3461228.0},
50          {4.05326982, 3580526.0},
51          {4.05585657, 3576946.0},
52          {4.05779662, 3439750.0},
53          {4.06038337, 3220296.0},
54          {4.06167674, 3070073.0},
55          {4.0636168,  2877648.0},
56          {4.06620355, 2595848.0},
57          {4.06749692, 2390157.0},
58          {4.06943698, 2175960.0},
59          {4.07202373, 1895104.0},
60          {4.0733171,  1687576.0},
61          {4.07525716, 1447024.0},
62          {4.0778439,  1130879.0},
63          {4.07978396, 904900.0},
64          {4.08237071, 717104.0},
65          {4.08366408, 620014.0}
66      };
67      /** Poor data: right of peak not symmetric with left of peak. */
68      protected static final double[][] DATASET2 = new double[][] {
69          {-20.15,   1523.0},
70          {-19.65,   1566.0},
71          {-19.15,   1592.0},
72          {-18.65,   1927.0},
73          {-18.15,   3089.0},
74          {-17.65,   6068.0},
75          {-17.15,  14239.0},
76          {-16.65,  34124.0},
77          {-16.15,  64097.0},
78          {-15.65, 110352.0},
79          {-15.15, 164742.0},
80          {-14.65, 209499.0},
81          {-14.15, 267274.0},
82          {-13.65, 283290.0},
83          {-13.15, 275363.0},
84          {-12.65, 258014.0},
85          {-12.15, 225000.0},
86          {-11.65, 200000.0},
87          {-11.15, 190000.0},
88          {-10.65, 185000.0},
89          {-10.15, 180000.0},
90          { -9.65, 179000.0},
91          { -9.15, 178000.0},
92          { -8.65, 177000.0},
93          { -8.15, 176000.0},
94          { -7.65, 175000.0},
95          { -7.15, 174000.0},
96          { -6.65, 173000.0},
97          { -6.15, 172000.0},
98          { -5.65, 171000.0},
99          { -5.15, 170000.0}
100     };
101     /** Poor data: long tails. */
102     protected static final double[][] DATASET3 = new double[][] {
103         {-90.15,   1513.0},
104         {-80.15,   1514.0},
105         {-70.15,   1513.0},
106         {-60.15,   1514.0},
107         {-50.15,   1513.0},
108         {-40.15,   1514.0},
109         {-30.15,   1513.0},
110         {-20.15,   1523.0},
111         {-19.65,   1566.0},
112         {-19.15,   1592.0},
113         {-18.65,   1927.0},
114         {-18.15,   3089.0},
115         {-17.65,   6068.0},
116         {-17.15,  14239.0},
117         {-16.65,  34124.0},
118         {-16.15,  64097.0},
119         {-15.65, 110352.0},
120         {-15.15, 164742.0},
121         {-14.65, 209499.0},
122         {-14.15, 267274.0},
123         {-13.65, 283290.0},
124         {-13.15, 275363.0},
125         {-12.65, 258014.0},
126         {-12.15, 214073.0},
127         {-11.65, 182244.0},
128         {-11.15, 136419.0},
129         {-10.65,  97823.0},
130         {-10.15,  58930.0},
131         { -9.65,  35404.0},
132         { -9.15,  16120.0},
133         { -8.65,   9823.0},
134         { -8.15,   5064.0},
135         { -7.65,   2575.0},
136         { -7.15,   1642.0},
137         { -6.65,   1101.0},
138         { -6.15,    812.0},
139         { -5.65,    690.0},
140         { -5.15,    565.0},
141         {  5.15,    564.0},
142         { 15.15,    565.0},
143         { 25.15,    564.0},
144         { 35.15,    565.0},
145         { 45.15,    564.0},
146         { 55.15,    565.0},
147         { 65.15,    564.0},
148         { 75.15,    565.0}
149     };
150     /** Poor data: right of peak is missing. */
151     protected static final double[][] DATASET4 = new double[][] {
152         {-20.15,   1523.0},
153         {-19.65,   1566.0},
154         {-19.15,   1592.0},
155         {-18.65,   1927.0},
156         {-18.15,   3089.0},
157         {-17.65,   6068.0},
158         {-17.15,  14239.0},
159         {-16.65,  34124.0},
160         {-16.15,  64097.0},
161         {-15.65, 110352.0},
162         {-15.15, 164742.0},
163         {-14.65, 209499.0},
164         {-14.15, 267274.0},
165         {-13.65, 283290.0}
166     };
167     /** Good data, but few points. */
168     protected static final double[][] DATASET5 = new double[][] {
169         {4.0254623,  531026.0},
170         {4.03128248, 984167.0},
171         {4.03839603, 1887233.0},
172         {4.04421621, 2687152.0},
173         {4.05132976, 3461228.0},
174         {4.05326982, 3580526.0},
175         {4.05779662, 3439750.0},
176         {4.0636168,  2877648.0},
177         {4.06943698, 2175960.0},
178         {4.07525716, 1447024.0},
179         {4.08237071, 717104.0},
180         {4.08366408, 620014.0}
181     };
182 
183     /**
184      * Basic.
185      */
186     @Test
187     public void testFit01() {
188         GaussianCurveFitter fitter = GaussianCurveFitter.create();
189         double[] parameters = fitter.fit(createDataset(DATASET1).toList());
190 
191         Assert.assertEquals(3496978.1837704973, parameters[0], 1e-4);
192         Assert.assertEquals(4.054933085999146, parameters[1], 1e-4);
193         Assert.assertEquals(0.015039355620304326, parameters[2], 1e-4);
194     }
195 
196     @Test
197     public void testWithMaxIterations1() {
198         final int maxIter = 20;
199         final double[] init = { 3.5e6, 4.2, 0.1 };
200 
201         GaussianCurveFitter fitter = GaussianCurveFitter.create();
202         double[] parameters = fitter
203             .withMaxIterations(maxIter)
204             .withStartPoint(init)
205             .fit(createDataset(DATASET1).toList());
206 
207         Assert.assertEquals(3496978.1837704973, parameters[0], 1e-2);
208         Assert.assertEquals(4.054933085999146, parameters[1], 1e-4);
209         Assert.assertEquals(0.015039355620304326, parameters[2], 1e-4);
210     }
211 
212     @Test(expected=MathIllegalStateException.class)
213     public void testWithMaxIterations2() {
214         final int maxIter = 1; // Too few iterations.
215         final double[] init = { 3.5e6, 4.2, 0.1 };
216 
217         GaussianCurveFitter fitter = GaussianCurveFitter.create();
218         fitter.withMaxIterations(maxIter)
219               .withStartPoint(init)
220               .fit(createDataset(DATASET1).toList());
221     }
222 
223     @Test
224     public void testWithStartPoint() {
225         final double[] init = { 3.5e6, 4.2, 0.1 };
226 
227         GaussianCurveFitter fitter = GaussianCurveFitter.create();
228         double[] parameters = fitter
229             .withStartPoint(init)
230             .fit(createDataset(DATASET1).toList());
231 
232         Assert.assertEquals(3496978.1837704973, parameters[0], 1e-2);
233         Assert.assertEquals(4.054933085999146, parameters[1], 1e-4);
234         Assert.assertEquals(0.015039355620304326, parameters[2], 1e-4);
235     }
236 
237     /**
238      * Zero points is not enough observed points.
239      */
240     @Test(expected=MathIllegalArgumentException.class)
241     public void testFit02() {
242         GaussianCurveFitter.create().fit(new WeightedObservedPoints().toList());
243     }
244 
245     /**
246      * Two points is not enough observed points.
247      */
248     @Test(expected=MathIllegalArgumentException.class)
249     public void testFit03() {
250         GaussianCurveFitter fitter = GaussianCurveFitter.create();
251         fitter.fit(createDataset(new double[][] {
252                     {4.0254623,  531026.0},
253                     {4.02804905, 664002.0}
254                 }).toList());
255     }
256 
257     /**
258      * Poor data: right of peak not symmetric with left of peak.
259      */
260     @Test
261     public void testFit04() {
262         GaussianCurveFitter fitter = GaussianCurveFitter.create();
263         double[] parameters = fitter.fit(createDataset(DATASET2).toList());
264 
265         Assert.assertEquals(233003.2967252038, parameters[0], 1e-4);
266         Assert.assertEquals(-10.654887521095983, parameters[1], 1e-4);
267         Assert.assertEquals(4.335937353196641, parameters[2], 1e-4);
268     }
269 
270     /**
271      * Poor data: long tails.
272      */
273     @Test
274     public void testFit05() {
275         GaussianCurveFitter fitter = GaussianCurveFitter.create();
276         double[] parameters = fitter.fit(createDataset(DATASET3).toList());
277 
278         Assert.assertEquals(283863.81929180305, parameters[0], 1e-4);
279         Assert.assertEquals(-13.29641995105174, parameters[1], 1e-4);
280         Assert.assertEquals(1.7297330293549908, parameters[2], 1e-4);
281     }
282 
283     /**
284      * Poor data: right of peak is missing.
285      */
286     @Test
287     public void testFit06() {
288         GaussianCurveFitter fitter = GaussianCurveFitter.create();
289         double[] parameters = fitter.fit(createDataset(DATASET4).toList());
290 
291         Assert.assertEquals(285250.66754309234, parameters[0], 1e-4);
292         Assert.assertEquals(-13.528375695228455, parameters[1], 1e-4);
293         Assert.assertEquals(1.5204344894331614, parameters[2], 1e-4);
294     }
295 
296     /**
297      * Basic with smaller dataset.
298      */
299     @Test
300     public void testFit07() {
301         GaussianCurveFitter fitter = GaussianCurveFitter.create();
302         double[] parameters = fitter.fit(createDataset(DATASET5).toList());
303 
304         Assert.assertEquals(3514384.729342235, parameters[0], 1e-4);
305         Assert.assertEquals(4.054970307455625, parameters[1], 1e-4);
306         Assert.assertEquals(0.015029412832160017, parameters[2], 1e-4);
307     }
308 
309     @Test
310     public void testMath519() {
311         // The optimizer will try negative sigma values but "GaussianCurveFitter"
312         // will catch the raised exceptions and return NaN values instead.
313 
314         final double[] data = {
315             1.1143831578403364E-29,
316             4.95281403484594E-28,
317             1.1171347211930288E-26,
318             1.7044813962636277E-25,
319             1.9784716574832164E-24,
320             1.8630236407866774E-23,
321             1.4820532905097742E-22,
322             1.0241963854632831E-21,
323             6.275077366673128E-21,
324             3.461808994532493E-20,
325             1.7407124684715706E-19,
326             8.056687953553974E-19,
327             3.460193945992071E-18,
328             1.3883326374011525E-17,
329             5.233894983671116E-17,
330             1.8630791465263745E-16,
331             6.288759227922111E-16,
332             2.0204433920597856E-15,
333             6.198768938576155E-15,
334             1.821419346860626E-14,
335             5.139176445538471E-14,
336             1.3956427429045787E-13,
337             3.655705706448139E-13,
338             9.253753324779779E-13,
339             2.267636001476696E-12,
340             5.3880460095836855E-12,
341             1.2431632654852931E-11
342         };
343 
344         final WeightedObservedPoints obs = new WeightedObservedPoints();
345         for (int i = 0; i < data.length; i++) {
346             obs.add(i, data[i]);
347         }
348         final double[] p = GaussianCurveFitter.create().fit(obs.toList());
349 
350         Assert.assertEquals(53.1572792, p[1], 1e-7);
351         Assert.assertEquals(5.75214622, p[2], 1e-8);
352     }
353 
354     @Test
355     public void testMath798() {
356         // When the data points are not commented out below, the fit stalls.
357         // This is expected however, since the whole dataset hardly looks like
358         // a Gaussian.
359         // When commented out, the fit proceeds fine.
360 
361         final WeightedObservedPoints obs = new WeightedObservedPoints();
362 
363         obs.add(0.23, 395.0);
364         //obs.add(0.68, 0.0);
365         obs.add(1.14, 376.0);
366         //obs.add(1.59, 0.0);
367         obs.add(2.05, 163.0);
368         //obs.add(2.50, 0.0);
369         obs.add(2.95, 49.0);
370         //obs.add(3.41, 0.0);
371         obs.add(3.86, 16.0);
372         //obs.add(4.32, 0.0);
373         obs.add(4.77, 1.0);
374 
375         final double[] p = GaussianCurveFitter.create().fit(obs.toList());
376 
377         // Values are copied from a previous run of this test.
378         Assert.assertEquals(420.8397296167364, p[0], 1e-12);
379         Assert.assertEquals(0.603770729862231, p[1], 1e-15);
380         Assert.assertEquals(1.0786447936766612, p[2], 1e-14);
381     }
382 
383     /**
384      * Adds the specified points to specified <code>GaussianCurveFitter</code>
385      * instance.
386      *
387      * @param points Data points where first dimension is a point index and
388      *        second dimension is an array of length two representing the point
389      *        with the first value corresponding to X and the second value
390      *        corresponding to Y.
391      * @return the collection of observed points.
392      */
393     private static WeightedObservedPoints createDataset(double[][] points) {
394         final WeightedObservedPoints obs = new WeightedObservedPoints();
395         for (int i = 0; i < points.length; i++) {
396             obs.add(points[i][0], points[i][1]);
397         }
398         return obs;
399     }
400 }