1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 package org.hipparchus.distribution.multivariate;
23
24 import java.util.ArrayList;
25 import java.util.List;
26
27 import org.hipparchus.exception.MathIllegalArgumentException;
28 import org.hipparchus.exception.MathRuntimeException;
29 import org.hipparchus.util.Pair;
30 import org.junit.Assert;
31 import org.junit.Test;
32
33
34
35
36
37
38 public class MultivariateNormalMixtureModelDistributionTest {
39
40 @Test
41 public void testNonUnitWeightSum() {
42 final double[] weights = { 1, 2 };
43 final double[][] means = { { -1.5, 2.0 },
44 { 4.0, 8.2 } };
45 final double[][][] covariances = { { { 2.0, -1.1 },
46 { -1.1, 2.0 } },
47 { { 3.5, 1.5 },
48 { 1.5, 3.5 } } };
49 final MultivariateNormalMixtureModelDistribution d
50 = create(weights, means, covariances);
51
52 final List<Pair<Double, MultivariateNormalDistribution>> comp = d.getComponents();
53
54 Assert.assertEquals(1d / 3, comp.get(0).getFirst().doubleValue(), Math.ulp(1d));
55 Assert.assertEquals(2d / 3, comp.get(1).getFirst().doubleValue(), Math.ulp(1d));
56 }
57
58 @Test(expected=MathRuntimeException.class)
59 public void testWeightSumOverFlow() {
60 final double[] weights = { 0.5 * Double.MAX_VALUE, 0.51 * Double.MAX_VALUE };
61 final double[][] means = { { -1.5, 2.0 },
62 { 4.0, 8.2 } };
63 final double[][][] covariances = { { { 2.0, -1.1 },
64 { -1.1, 2.0 } },
65 { { 3.5, 1.5 },
66 { 1.5, 3.5 } } };
67 create(weights, means, covariances);
68 }
69
70 @Test(expected=MathIllegalArgumentException.class)
71 public void testPreconditionPositiveWeights() {
72 final double[] negativeWeights = { -0.5, 1.5 };
73 final double[][] means = { { -1.5, 2.0 },
74 { 4.0, 8.2 } };
75 final double[][][] covariances = { { { 2.0, -1.1 },
76 { -1.1, 2.0 } },
77 { { 3.5, 1.5 },
78 { 1.5, 3.5 } } };
79 create(negativeWeights, means, covariances);
80 }
81
82
83
84
85 @Test
86 public void testDensities() {
87 final double[] weights = { 0.3, 0.7 };
88 final double[][] means = { { -1.5, 2.0 },
89 { 4.0, 8.2 } };
90 final double[][][] covariances = { { { 2.0, -1.1 },
91 { -1.1, 2.0 } },
92 { { 3.5, 1.5 },
93 { 1.5, 3.5 } } };
94 final MultivariateNormalMixtureModelDistribution d
95 = create(weights, means, covariances);
96
97
98 final double[][] testValues = { { -1.5, 2 },
99 { 4, 8.2 },
100 { 1.5, -2 },
101 { 0, 0 } };
102
103
104
105
106
107
108 final double[] correctDensities = { 0.02862037278930575,
109 0.03523044847314091,
110 0.000416241365629767,
111 0.009932042831700297 };
112
113 for (int i = 0; i < testValues.length; i++) {
114 Assert.assertEquals(correctDensities[i], d.density(testValues[i]), Math.ulp(1d));
115 }
116 }
117
118
119
120
121 @Test
122 public void testSampling() {
123 final double[] weights = { 0.3, 0.7 };
124 final double[][] means = { { -1.5, 2.0 },
125 { 4.0, 8.2 } };
126 final double[][][] covariances = { { { 2.0, -1.1 },
127 { -1.1, 2.0 } },
128 { { 3.5, 1.5 },
129 { 1.5, 3.5 } } };
130 final MultivariateNormalMixtureModelDistribution d
131 = create(weights, means, covariances);
132 d.reseedRandomGenerator(50);
133
134 final double[][] correctSamples = getCorrectSamples();
135 final int n = correctSamples.length;
136 final double[][] samples = d.sample(n);
137
138 for (int i = 0; i < n; i++) {
139 for (int j = 0; j < samples[i].length; j++) {
140 Assert.assertEquals(correctSamples[i][j], samples[i][j], 1e-16);
141 }
142 }
143 }
144
145
146
147
148
149
150
151
152
153 private MultivariateNormalMixtureModelDistribution create(double[] weights,
154 double[][] means,
155 double[][][] covariances) {
156 final List<Pair<Double, MultivariateNormalDistribution>> mvns
157 = new ArrayList<Pair<Double, MultivariateNormalDistribution>>();
158
159 for (int i = 0; i < weights.length; i++) {
160 final MultivariateNormalDistribution dist
161 = new MultivariateNormalDistribution(means[i], covariances[i]);
162 mvns.add(new Pair<Double, MultivariateNormalDistribution>(weights[i], dist));
163 }
164
165 return new MultivariateNormalMixtureModelDistribution(mvns);
166 }
167
168
169
170
171 private double[][] getCorrectSamples() {
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189 return new double[][] {
190 { 6.259990922080121, 11.972954175355897 },
191 { -2.5296544304801847, 1.0031292519854365 },
192 { 0.49037886081440396, 0.9758251727325711 },
193 { 5.022970993312015, 9.289348879616787 },
194 { -1.686183146603914, 2.007244382745706 },
195 { -1.4729253946002685, 2.762166644212484 },
196 { 4.329788143963888, 11.514016497132253 },
197 { 3.008674596114442, 4.960246550446107 },
198 { 3.342379304090846, 5.937630105198625 },
199 { 2.6993068328674754, 7.42190871572571 },
200 { -2.446569340219571, 1.9687117791378763 },
201 { 1.922417883170056, 4.917616702617099 },
202 { -1.1969741543898518, 2.4576126277884387 },
203 { 2.4216948702967196, 8.227710158117134 },
204 { 6.701424725804463, 9.098666475042428 },
205 { 2.9890253545698964, 9.643807939324331 },
206 { 0.7162632354907799, 8.978811120287553 },
207 { -2.7548699149775877, 4.1354812280794215 },
208 { 8.304528180745018, 11.602319388898287 },
209 { -2.7633253389165926, 2.786173883989795 },
210 { 1.3322228389460813, 5.447481218602913 },
211 { -1.8120096092851508, 1.605624499560037 },
212 { 3.6546253437206504, 8.195304526564376 },
213 { -2.312349539658588, 1.868941220444169 },
214 { -1.882322136356522, 2.033795570464242 },
215 { 4.562770714939441, 7.414967958885031 },
216 { 4.731882017875329, 8.890676665580747 },
217 { 3.492186010427425, 8.9005225241848 },
218 { -1.619700190174894, 3.314060142479045 },
219 { 3.5466090064003315, 7.75182101001913 },
220 { 5.455682472787392, 8.143119287755635 },
221 { -2.3859602945473197, 1.8826732217294837 },
222 { 3.9095306088680015, 9.258129209626317 },
223 { 7.443020189508173, 7.837840713329312 },
224 { 2.136004873917428, 6.917636475958297 },
225 { -1.7203379410395119, 2.3212878757611524 },
226 { 4.618991257611526, 12.095065976419436 },
227 { -0.4837044029854387, 0.8255970441255125 },
228 { -4.438938966557163, 4.948666297280241 },
229 { -0.4539625134045906, 4.700922454655341 },
230 { 2.1285488271265356, 8.457941480487563 },
231 { 3.4873561871454393, 11.99809827845933 },
232 { 4.723049431412658, 7.813095742563365 },
233 { 1.1245583037967455, 5.20587873556688 },
234 { 1.3411933634409197, 6.069796875785409 },
235 { 4.585119332463686, 7.967669543767418 },
236 { 1.3076522817963823, -0.647431033653445 },
237 { -1.4449446442803178, 1.9400424267464862 },
238 { -2.069794456383682, 3.5824162107496544 },
239 { -0.15959481421417276, 1.5466782303315405 },
240 { -2.0823081278810136, 3.0914366458581437 },
241 { 3.521944615248141, 10.276112932926408 },
242 { 1.0164326704884257, 4.342329556442856 },
243 { 5.3718868590295275, 8.374761158360922 },
244 { 0.3673656866959396, 8.75168581694866 },
245 { -2.250268955954753, 1.4610850300996527 },
246 { -2.312739727403522, 1.5921126297576362 },
247 { 3.138993360831055, 6.7338392374947365 },
248 { 2.6978650950790115, 7.941857288979095 },
249 { 4.387985088655384, 8.253499976968 },
250 { -1.8928961721456705, 0.23631082388724223 },
251 { 4.43509029544109, 8.565290285488782 },
252 { 4.904728034106502, 5.79936660133754 },
253 { -1.7640371853739507, 2.7343727594167433 },
254 { 2.4553674733053463, 7.875871017408807 },
255 { -2.6478965122565006, 4.465127753193949 },
256 { 3.493873671142299, 10.443093773532448 },
257 { 1.1321916197409103, 7.127108479263268 },
258 { -1.7335075535240392, 2.550629648463023 },
259 { -0.9772679734368084, 4.377196298969238 },
260 { 3.6388366973980357, 6.947299283206256 },
261 { 0.27043799318823325, 6.587978599614367 },
262 { 5.356782352010253, 7.388957912116327 },
263 { -0.09187745751354681, 0.23612399246659743 },
264 { 2.903203580353435, 3.8076727621794415 },
265 { 5.297014824937293, 8.650985262326508 },
266 { 4.934508602170976, 9.164571423190052 },
267 { -1.0004911869654256, 4.797064194444461 },
268 { 6.782491700298046, 11.852373338280497 },
269 { 2.8983678524536014, 8.303837362117521 },
270 { 4.805003269830865, 6.790462904325329 },
271 { -0.8815799740744226, 1.3015810062131394 },
272 { 5.115138859802104, 6.376895810201089 },
273 { 4.301239328205988, 8.60546337560793 },
274 { 3.276423626317666, 9.889429652591947 },
275 { -4.001924973153122, 4.3353864592328515 },
276 { 3.9571892554119517, 4.500569057308562 },
277 { 4.783067027436208, 7.451125480601317 },
278 { 4.79065438272821, 9.614122776979698 },
279 { 2.677655270279617, 6.8875223698210135 },
280 { -1.3714746289327362, 2.3992153193382437 },
281 { 3.240136859745249, 7.748339397522042 },
282 { 5.107885374416291, 8.508324480583724 },
283 { -1.5830830226666048, 0.9139127045208315 },
284 { -1.1596156791652918, -0.04502759384531929 },
285 { -0.4670021307952068, 3.6193633227841624 },
286 { -0.7026065228267798, 0.4811423031997131 },
287 { -2.719979836732917, 2.5165041618080104 },
288 { 1.0336754331123372, -0.34966029029320644 },
289 { 4.743217291882213, 5.750060115251131 }
290 };
291 }
292 }
293
294
295
296
297 class MultivariateNormalMixtureModelDistribution
298 extends MixtureMultivariateRealDistribution<MultivariateNormalDistribution> {
299
300 public MultivariateNormalMixtureModelDistribution(List<Pair<Double, MultivariateNormalDistribution>> components) {
301 super(components);
302 }
303 }