View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.distribution.continuous;
24  
25  import org.hipparchus.distribution.RealDistribution;
26  import org.hipparchus.exception.MathIllegalArgumentException;
27  import org.junit.Assert;
28  import org.junit.Test;
29  
30  /**
31   * Test cases for {@link NormalDistribution}.
32   */
33  public class NormalDistributionTest extends RealDistributionAbstractTest {
34  
35      //-------------- Implementations for abstract methods -----------------------
36  
37      /** Creates the default real distribution instance to use in tests. */
38      @Override
39      public NormalDistribution makeDistribution() {
40          return new NormalDistribution(2.1, 1.4);
41      }
42  
43      /** Creates the default cumulative probability distribution test input values */
44      @Override
45      public double[] makeCumulativeTestPoints() {
46          // quantiles computed using R
47          return new double[] {-2.226325228634938d, -1.156887023657177d, -0.643949578356075d, -0.2027950777320613d, 0.305827808237559d,
48                  6.42632522863494d, 5.35688702365718d, 4.843949578356074d, 4.40279507773206d, 3.89417219176244d};
49      }
50  
51      /** Creates the default cumulative probability density test expected values */
52      @Override
53      public double[] makeCumulativeTestValues() {
54          return new double[] {0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.999d,
55                  0.990d, 0.975d, 0.950d, 0.900d};
56      }
57  
58      /** Creates the default probability density test expected values */
59      @Override
60      public double[] makeDensityTestValues() {
61          return new double[] {0.00240506434076, 0.0190372444310, 0.0417464784322, 0.0736683145538, 0.125355951380,
62                  0.00240506434076, 0.0190372444310, 0.0417464784322, 0.0736683145538, 0.125355951380};
63      }
64  
65      // --------------------- Override tolerance  --------------
66      protected double defaultTolerance = 1e-9;
67      @Override
68      public void setUp() {
69          super.setUp();
70          setTolerance(defaultTolerance);
71      }
72  
73      //---------------------------- Additional test cases -------------------------
74  
75      private void verifyQuantiles() {
76          NormalDistribution distribution = (NormalDistribution) getDistribution();
77          double mu = distribution.getMean();
78          double sigma = distribution.getStandardDeviation();
79          setCumulativeTestPoints( new double[] {mu - 2 *sigma, mu - sigma,
80                  mu, mu + sigma, mu + 2 * sigma,  mu + 3 * sigma, mu + 4 * sigma,
81                  mu + 5 * sigma});
82          // Quantiles computed using R (same as Mathematica)
83          setCumulativeTestValues(new double[] {0.02275013194817921, 0.158655253931457, 0.5, 0.841344746068543,
84                  0.977249868051821, 0.99865010196837, 0.999968328758167,  0.999999713348428});
85          verifyCumulativeProbabilities();
86      }
87  
88      @Test
89      public void testQuantiles() {
90          setDensityTestValues(new double[] {0.0385649760808, 0.172836231799, 0.284958771715, 0.172836231799, 0.0385649760808,
91                  0.00316560600853, 9.55930184035e-05, 1.06194251052e-06});
92          verifyQuantiles();
93          verifyDensities();
94  
95          setDistribution(new NormalDistribution(0, 1));
96          setDensityTestValues(new double[] {0.0539909665132, 0.241970724519, 0.398942280401, 0.241970724519, 0.0539909665132,
97                  0.00443184841194, 0.000133830225765, 1.48671951473e-06});
98          verifyQuantiles();
99          verifyDensities();
100 
101         setDistribution(new NormalDistribution(0, 0.1));
102         setDensityTestValues(new double[] {0.539909665132, 2.41970724519, 3.98942280401, 2.41970724519,
103                 0.539909665132, 0.0443184841194, 0.00133830225765, 1.48671951473e-05});
104         verifyQuantiles();
105         verifyDensities();
106     }
107 
108     @Test
109     public void testInverseCumulativeProbabilityExtremes() {
110         setInverseCumulativeTestPoints(new double[] {0, 1});
111         setInverseCumulativeTestValues(
112                 new double[] {Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY});
113         verifyInverseCumulativeProbabilities();
114     }
115 
116     // MATH-1257
117     @Test
118     public void testCumulativeProbability() {
119         final RealDistribution dist = new NormalDistribution(0, 1);
120         double x = -10;
121         double expected = 7.61985e-24;
122         double v = dist.cumulativeProbability(x);
123         double tol = 1e-5;
124         Assert.assertEquals(1, v / expected, tol);
125     }
126 
127     @Test
128     public void testGetMean() {
129         NormalDistribution distribution = (NormalDistribution) getDistribution();
130         Assert.assertEquals(2.1, distribution.getMean(), 0);
131     }
132 
133     @Test
134     public void testGetStandardDeviation() {
135         NormalDistribution distribution = (NormalDistribution) getDistribution();
136         Assert.assertEquals(1.4, distribution.getStandardDeviation(), 0);
137     }
138 
139     @Test(expected=MathIllegalArgumentException.class)
140     public void testPreconditions() {
141         new NormalDistribution(1, 0);
142     }
143 
144     @Test
145     public void testDensity() {
146         double [] x = new double[]{-2, -1, 0, 1, 2};
147         // R 2.5: print(dnorm(c(-2,-1,0,1,2)), digits=10)
148         checkDensity(0, 1, x, new double[]{0.05399096651, 0.24197072452, 0.39894228040, 0.24197072452, 0.05399096651});
149         // R 2.5: print(dnorm(c(-2,-1,0,1,2), mean=1.1), digits=10)
150         checkDensity(1.1, 1, x, new double[]{0.003266819056,0.043983595980,0.217852177033,0.396952547477,0.266085249899});
151     }
152 
153     private void checkDensity(double mean, double sd, double[] x, double[] expected) {
154         NormalDistribution d = new NormalDistribution(mean, sd);
155         for (int i = 0; i < x.length; i++) {
156             Assert.assertEquals(expected[i], d.density(x[i]), 1e-9);
157         }
158     }
159 
160     /**
161      * Check to make sure top-coding of extreme values works correctly.
162      * Verifies fixes for JIRA MATH-167, MATH-414
163      */
164     @Test
165     public void testExtremeValues() {
166         NormalDistribution distribution = new NormalDistribution(0, 1);
167         for (int i = 0; i < 100; i++) { // make sure no convergence exception
168             double lowerTail = distribution.cumulativeProbability(-i);
169             double upperTail = distribution.cumulativeProbability(i);
170             if (i < 9) { // make sure not top-coded
171                 // For i = 10, due to bad tail precision in erf (MATH-364), 1 is returned
172                 // TODO: once MATH-364 is resolved, replace 9 with 30
173                 Assert.assertTrue(lowerTail > 0.0d);
174                 Assert.assertTrue(upperTail < 1.0d);
175             }
176             else { // make sure top coding not reversed
177                 Assert.assertTrue(lowerTail < 0.00001);
178                 Assert.assertTrue(upperTail > 0.99999);
179             }
180         }
181 
182         Assert.assertEquals(distribution.cumulativeProbability(Double.MAX_VALUE), 1, 0);
183         Assert.assertEquals(distribution.cumulativeProbability(-Double.MAX_VALUE), 0, 0);
184         Assert.assertEquals(distribution.cumulativeProbability(Double.POSITIVE_INFINITY), 1, 0);
185         Assert.assertEquals(distribution.cumulativeProbability(Double.NEGATIVE_INFINITY), 0, 0);
186     }
187 
188     @Test
189     public void testMath280() {
190         NormalDistribution normal = new NormalDistribution(0,1);
191         double result = normal.inverseCumulativeProbability(0.9986501019683698);
192         Assert.assertEquals(3.0, result, defaultTolerance);
193         result = normal.inverseCumulativeProbability(0.841344746068543);
194         Assert.assertEquals(1.0, result, defaultTolerance);
195         result = normal.inverseCumulativeProbability(0.9999683287581673);
196         Assert.assertEquals(4.0, result, defaultTolerance);
197         result = normal.inverseCumulativeProbability(0.9772498680518209);
198         Assert.assertEquals(2.0, result, defaultTolerance);
199     }
200 
201     @Test
202     public void testMoments() {
203         final double tol = 1e-9;
204         NormalDistribution dist;
205 
206         dist = new NormalDistribution(0, 1);
207         Assert.assertEquals(dist.getNumericalMean(), 0, tol);
208         Assert.assertEquals(dist.getNumericalVariance(), 1, tol);
209 
210         dist = new NormalDistribution(2.2, 1.4);
211         Assert.assertEquals(dist.getNumericalMean(), 2.2, tol);
212         Assert.assertEquals(dist.getNumericalVariance(), 1.4 * 1.4, tol);
213 
214         dist = new NormalDistribution(-2000.9, 10.4);
215         Assert.assertEquals(dist.getNumericalMean(), -2000.9, tol);
216         Assert.assertEquals(dist.getNumericalVariance(), 10.4 * 10.4, tol);
217     }
218 }