1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 package org.hipparchus.distribution.continuous;
24
25 import static org.junit.Assert.assertEquals;
26
27 import org.junit.Test;
28
29
30
31
32
33
34 public class ChiSquaredDistributionTest extends RealDistributionAbstractTest {
35
36
37
38
39 @Override
40 public ChiSquaredDistribution makeDistribution() {
41 return new ChiSquaredDistribution(5.0);
42 }
43
44
45 @Override
46 public double[] makeCumulativeTestPoints() {
47
48 return new double[] {
49 0.210212602629, 0.554298076728, 0.831211613487, 1.14547622606, 1.61030798696,
50 20.5150056524, 15.0862724694, 12.8325019940, 11.0704976935, 9.23635689978
51 };
52 }
53
54
55 @Override
56 public double[] makeCumulativeTestValues() {
57 return new double[] { 0.001, 0.01, 0.025, 0.05, 0.1, 0.999, 0.990, 0.975, 0.950, 0.900 };
58 }
59
60
61 @Override
62 public double[] makeInverseCumulativeTestPoints() {
63 return new double[] { 0, 0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.999d, 0.990d, 0.975d, 0.950d, 0.900d, 1 };
64 }
65
66
67 @Override
68 public double[] makeInverseCumulativeTestValues() {
69 return new double[] {
70 0, 0.210212602629, 0.554298076728, 0.831211613487, 1.14547622606, 1.61030798696, 20.5150056524,
71 15.0862724694, 12.8325019940, 11.0704976935, 9.23635689978, Double.POSITIVE_INFINITY
72 };
73 }
74
75
76 @Override
77 public double[] makeDensityTestValues() {
78 return new double[] {
79 0.0115379817652, 0.0415948507811, 0.0665060119842, 0.0919455953114, 0.121472591024,
80 0.000433630076361, 0.00412780610309, 0.00999340341045, 0.0193246438937, 0.0368460089216
81 };
82 }
83
84
85 @Override
86 public void setUp() {
87 super.setUp();
88 setTolerance(1e-9);
89 }
90
91
92
93 @Test
94 public void testSmallDf() {
95 setDistribution(new ChiSquaredDistribution(0.1d));
96 setTolerance(1E-4);
97
98 setCumulativeTestPoints(new double[] {
99 1.168926E-60, 1.168926E-40, 1.063132E-32, 1.144775E-26, 1.168926E-20,
100 5.472917, 2.175255, 1.13438, 0.5318646, 0.1526342
101 });
102 setInverseCumulativeTestValues(getCumulativeTestPoints());
103 setInverseCumulativeTestPoints(getCumulativeTestValues());
104 verifyCumulativeProbabilities();
105 verifyInverseCumulativeProbabilities();
106 }
107
108 @Test
109 public void testDfAccessors() {
110 ChiSquaredDistribution distribution = (ChiSquaredDistribution) getDistribution();
111 assertEquals(5d, distribution.getDegreesOfFreedom(), Double.MIN_VALUE);
112 }
113
114 @Test
115 public void testDensity() {
116 double[] x = new double[]{-0.1, 1e-6, 0.5, 1, 2, 5};
117
118 checkDensity(1, x, new double[] {
119 0.00000000000, 398.94208093034, 0.43939128947, 0.24197072452, 0.10377687436, 0.01464498256
120 });
121
122 checkDensity(0.1, x, new double[] {
123 0.000000000e+00, 2.486453997e+04, 7.464238732e-02, 3.009077718e-02, 9.447299159e-03, 8.827199396e-04
124 });
125
126 checkDensity(2, x, new double[] {
127 0.00000000000, 0.49999975000, 0.38940039154, 0.30326532986, 0.18393972059, 0.04104249931
128 });
129
130 checkDensity(10, x, new double[] {
131 0.000000000e+00, 1.302082682e-27, 6.337896998e-05, 7.897534632e-04, 7.664155024e-03, 6.680094289e-02
132 });
133 }
134
135 private void checkDensity(double df, double[] x, double[] expected) {
136 ChiSquaredDistribution d = new ChiSquaredDistribution(df);
137 for (int i = 0; i < x.length; i++) {
138 assertEquals(expected[i], d.density(x[i]), 1e-5);
139 }
140 }
141
142 @Test
143 public void testMoments() {
144 final double tol = 1e-9;
145 ChiSquaredDistribution dist;
146
147 dist = new ChiSquaredDistribution(1500);
148 assertEquals(dist.getNumericalMean(), 1500, tol);
149 assertEquals(dist.getNumericalVariance(), 3000, tol);
150
151 dist = new ChiSquaredDistribution(1.12);
152 assertEquals(dist.getNumericalMean(), 1.12, tol);
153 assertEquals(dist.getNumericalVariance(), 2.24, tol);
154 }
155 }