View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.stat.regression;
23  
24  import java.io.Serializable;
25  import java.util.Arrays;
26  
27  import org.hipparchus.exception.MathIllegalArgumentException;
28  import org.hipparchus.util.FastMath;
29  import org.hipparchus.util.MathUtils;
30  
31  /**
32   * Results of a Multiple Linear Regression model fit.
33   *
34   */
35  public class RegressionResults implements Serializable {
36  
37      /** INDEX of Sum of Squared Errors */
38      private static final int SSE_IDX = 0;
39      /** INDEX of Sum of Squares of Model */
40      private static final int SST_IDX = 1;
41      /** INDEX of R-Squared of regression */
42      private static final int RSQ_IDX = 2;
43      /** INDEX of Mean Squared Error */
44      private static final int MSE_IDX = 3;
45      /** INDEX of Adjusted R Squared */
46      private static final int ADJRSQ_IDX = 4;
47      /** UID */
48      private static final long serialVersionUID = 1l;
49      /** regression slope parameters */
50      private final double[] parameters;
51      /** variance covariance matrix of parameters */
52      private final double[][] varCovData;
53      /** boolean flag for variance covariance matrix in symm compressed storage */
54      private final boolean isSymmetricVCD;
55      /** rank of the solution */
56      @SuppressWarnings("unused")
57      private final int rank;
58      /** number of observations on which results are based */
59      private final long nobs;
60      /** boolean flag indicator of whether a constant was included*/
61      private final boolean containsConstant;
62      /** array storing global results, SSE, MSE, RSQ, adjRSQ */
63      private final double[] globalFitInfo;
64  
65      /**
66       *  Set the default constructor to private access
67       *  to prevent inadvertent instantiation
68       */
69      @SuppressWarnings("unused")
70      private RegressionResults() {
71          this.parameters = null;
72          this.varCovData = null;
73          this.rank = -1;
74          this.nobs = -1;
75          this.containsConstant = false;
76          this.isSymmetricVCD = false;
77          this.globalFitInfo = null;
78      }
79  
80      /**
81       * Constructor for Regression Results.
82       *
83       * @param parameters a double array with the regression slope estimates
84       * @param varcov the variance covariance matrix, stored either in a square matrix
85       * or as a compressed
86       * @param isSymmetricCompressed a flag which denotes that the variance covariance
87       * matrix is in symmetric compressed format
88       * @param nobs the number of observations of the regression estimation
89       * @param rank the number of independent variables in the regression
90       * @param sumy the sum of the independent variable
91       * @param sumysq the sum of the squared independent variable
92       * @param sse sum of squared errors
93       * @param containsConstant true model has constant,  false model does not have constant
94       * @param copyData if true a deep copy of all input data is made, if false only references
95       * are copied and the RegressionResults become mutable
96       */
97      public RegressionResults(
98              final double[] parameters, final double[][] varcov,
99              final boolean isSymmetricCompressed,
100             final long nobs, final int rank,
101             final double sumy, final double sumysq, final double sse,
102             final boolean containsConstant,
103             final boolean copyData) {
104         if (copyData) {
105             this.parameters = parameters.clone();
106             this.varCovData = new double[varcov.length][];
107             for (int i = 0; i < varcov.length; i++) {
108                 this.varCovData[i] = varcov[i].clone();
109             }
110         } else {
111             this.parameters = parameters; // NOPMD - storing a reference to the array is controlled by a user-supplied parameter
112             this.varCovData = varcov; // NOPMD - storing a reference to the array is controlled by a user-supplied parameter
113         }
114         this.isSymmetricVCD = isSymmetricCompressed;
115         this.nobs = nobs;
116         this.rank = rank;
117         this.containsConstant = containsConstant;
118         this.globalFitInfo = new double[5];
119         Arrays.fill(this.globalFitInfo, Double.NaN);
120 
121         if (rank > 0) {
122             this.globalFitInfo[SST_IDX] = containsConstant ?
123                     (sumysq - sumy * sumy / nobs) : sumysq;
124         }
125 
126         this.globalFitInfo[SSE_IDX] = sse;
127         this.globalFitInfo[MSE_IDX] = this.globalFitInfo[SSE_IDX] / (nobs - rank);
128         this.globalFitInfo[RSQ_IDX] = 1.0 - this.globalFitInfo[SSE_IDX] / this.globalFitInfo[SST_IDX];
129 
130         if (!containsConstant) {
131             this.globalFitInfo[ADJRSQ_IDX] = 1.0 - (1.0 - this.globalFitInfo[RSQ_IDX]) * (((double) nobs) / (nobs - rank));
132         } else {
133             this.globalFitInfo[ADJRSQ_IDX] = 1.0 - (sse * (nobs - 1.0)) / (globalFitInfo[SST_IDX] * (nobs - rank));
134         }
135     }
136 
137     /**
138      * <p>Returns the parameter estimate for the regressor at the given index.</p>
139      *
140      * <p>A redundant regressor will have its redundancy flag set, as well as
141      *  a parameters estimated equal to {@code Double.NaN}</p>
142      *
143      * @param index Index.
144      * @return the parameters estimated for regressor at index.
145      * @throws MathIllegalArgumentException if {@code index} is not in the interval
146      * {@code [0, number of parameters)}.
147      */
148     public double getParameterEstimate(int index) throws MathIllegalArgumentException {
149         if (parameters == null) {
150             return Double.NaN;
151         }
152         MathUtils.checkRangeInclusive(index, 0, this.parameters.length - 1);
153         return this.parameters[index];
154     }
155 
156     /**
157      * <p>Returns a copy of the regression parameters estimates.</p>
158      *
159      * <p>The parameter estimates are returned in the natural order of the data.</p>
160      *
161      * <p>A redundant regressor will have its redundancy flag set, as will
162      *  a parameter estimate equal to {@code Double.NaN}.</p>
163      *
164      * @return array of parameter estimates, null if no estimation occurred
165      */
166     public double[] getParameterEstimates() {
167         if (this.parameters == null) {
168             return null; // NOPMD
169         }
170         return parameters.clone();
171     }
172 
173     /**
174      * Returns the <a href="http://www.xycoon.com/standerrorb(1).htm">standard
175      * error of the parameter estimate at index</a>,
176      * usually denoted s(b<sub>index</sub>).
177      *
178      * @param index Index.
179      * @return the standard errors associated with parameters estimated at index.
180      * @throws MathIllegalArgumentException if {@code index} is not in the interval
181      * {@code [0, number of parameters)}.
182      */
183     public double getStdErrorOfEstimate(int index) throws MathIllegalArgumentException {
184         if (parameters == null) {
185             return Double.NaN;
186         }
187         MathUtils.checkRangeInclusive(index, 0, this.parameters.length - 1);
188         double var = this.getVcvElement(index, index);
189         if (!Double.isNaN(var) && var > Double.MIN_VALUE) {
190             return FastMath.sqrt(var);
191         }
192         return Double.NaN;
193     }
194 
195     /**
196      * <p>Returns the <a href="http://www.xycoon.com/standerrorb(1).htm">standard
197      * error of the parameter estimates</a>,
198      * usually denoted s(b<sub>i</sub>).</p>
199      *
200      * <p>If there are problems with an ill conditioned design matrix then the regressor
201      * which is redundant will be assigned <code>Double.NaN</code>. </p>
202      *
203      * @return an array standard errors associated with parameters estimates,
204      *  null if no estimation occurred
205      */
206     public double[] getStdErrorOfEstimates() {
207         if (parameters == null) {
208             return null; // NOPMD
209         }
210         double[] se = new double[this.parameters.length];
211         for (int i = 0; i < this.parameters.length; i++) {
212             double var = this.getVcvElement(i, i);
213             if (!Double.isNaN(var) && var > Double.MIN_VALUE) {
214                 se[i] = FastMath.sqrt(var);
215                 continue;
216             }
217             se[i] = Double.NaN;
218         }
219         return se;
220     }
221 
222     /**
223      * <p>Returns the covariance between regression parameters i and j.</p>
224      *
225      * <p>If there are problems with an ill conditioned design matrix then the covariance
226      * which involves redundant columns will be assigned {@code Double.NaN}. </p>
227      *
228      * @param i {@code i}th regression parameter.
229      * @param j {@code j}th regression parameter.
230      * @return the covariance of the parameter estimates.
231      * @throws MathIllegalArgumentException if {@code i} or {@code j} is not in the
232      * interval {@code [0, number of parameters)}.
233      */
234     public double getCovarianceOfParameters(int i, int j) throws MathIllegalArgumentException {
235         if (parameters == null) {
236             return Double.NaN;
237         }
238         MathUtils.checkRangeInclusive(i, 0, this.parameters.length - 1);
239         MathUtils.checkRangeInclusive(j, 0, this.parameters.length - 1);
240         return this.getVcvElement(i, j);
241     }
242 
243     /**
244      * <p>Returns the number of parameters estimated in the model.</p>
245      *
246      * <p>This is the maximum number of regressors, some techniques may drop
247      * redundant parameters</p>
248      *
249      * @return number of regressors, -1 if not estimated
250      */
251     public int getNumberOfParameters() {
252         if (this.parameters == null) {
253             return -1;
254         }
255         return this.parameters.length;
256     }
257 
258     /**
259      * Returns the number of observations added to the regression model.
260      *
261      * @return Number of observations, -1 if an error condition prevents estimation
262      */
263     public long getN() {
264         return this.nobs;
265     }
266 
267     /**
268      * <p>Returns the sum of squared deviations of the y values about their mean.</p>
269      *
270      * <p>This is defined as SSTO
271      * <a href="http://www.xycoon.com/SumOfSquares.htm">here</a>.</p>
272      *
273      * <p>If {@code n < 2}, this returns {@code Double.NaN}.</p>
274      *
275      * @return sum of squared deviations of y values
276      */
277     public double getTotalSumSquares() {
278         return this.globalFitInfo[SST_IDX];
279     }
280 
281     /**
282      * <p>Returns the sum of squared deviations of the predicted y values about
283      * their mean (which equals the mean of y).</p>
284      *
285      * <p>This is usually abbreviated SSR or SSM.  It is defined as SSM
286      * <a href="http://www.xycoon.com/SumOfSquares.htm">here</a></p>
287      *
288      * <p><strong>Preconditions</strong>:</p><ul>
289      * <li>At least two observations (with at least two different x values)
290      * must have been added before invoking this method. If this method is
291      * invoked before a model can be estimated, <code>Double.NaN</code> is
292      * returned.
293      * </li></ul>
294      *
295      * @return sum of squared deviations of predicted y values
296      */
297     public double getRegressionSumSquares() {
298         return this.globalFitInfo[SST_IDX] - this.globalFitInfo[SSE_IDX];
299     }
300 
301     /**
302      * <p>Returns the <a href="http://www.xycoon.com/SumOfSquares.htm">
303      * sum of squared errors</a> (SSE) associated with the regression
304      * model.</p>
305      *
306      * <p>The return value is constrained to be non-negative - i.e., if due to
307      * rounding errors the computational formula returns a negative result,
308      * 0 is returned.</p>
309      *
310      * <p><strong>Preconditions</strong>:</p>
311      * <ul>
312      * <li>numberOfParameters data pairs
313      * must have been added before invoking this method. If this method is
314      * invoked before a model can be estimated, <code>Double,NaN</code> is
315      * returned.
316      * </li></ul>
317      *
318      * @return sum of squared errors associated with the regression model
319      */
320     public double getErrorSumSquares() {
321         return this.globalFitInfo[ SSE_IDX];
322     }
323 
324     /**
325      * <p>Returns the sum of squared errors divided by the degrees of freedom,
326      * usually abbreviated MSE.</p>
327      *
328      * <p>If there are fewer than <strong>numberOfParameters + 1</strong> data pairs in the model,
329      * or if there is no variation in <code>x</code>, this returns
330      * <code>Double.NaN</code>.</p>
331      *
332      * @return sum of squared deviations of y values
333      */
334     public double getMeanSquareError() {
335         return this.globalFitInfo[ MSE_IDX];
336     }
337 
338     /**
339      * <p>Returns the <a href="http://www.xycoon.com/coefficient1.htm">
340      * coefficient of multiple determination</a>,
341      * usually denoted r-square.</p>
342      *
343      * <p><strong>Preconditions</strong>:</p>
344      * <ul>
345      * <li>At least numberOfParameters observations (with at least numberOfParameters different x values)
346      * must have been added before invoking this method. If this method is
347      * invoked before a model can be estimated, {@code Double,NaN} is
348      * returned.
349      * </li></ul>
350      *
351      * @return r-square, a double in the interval [0, 1]
352      */
353     public double getRSquared() {
354         return this.globalFitInfo[ RSQ_IDX];
355     }
356 
357     /**
358      * <p>Returns the adjusted R-squared statistic, defined by the formula
359      * \(
360      * R_\mathrm{adj}^2 = 1 - \frac{\mathrm{SSR} (n - 1)}{\mathrm{SSTO} (n - p)}
361      * \)
362      * where SSR is the sum of squared residuals},
363      * SSTO is the total sum of squares}, n is the number
364      * of observations and p is the number of parameters estimated (including the intercept).</p>
365      *
366      * <p>If the regression is estimated without an intercept term, what is returned is</p><pre>
367      * <code> 1 - (1 - {@link #getRSquared()} ) * (n / (n - p)) </code>
368      * </pre>
369      *
370      * @return adjusted R-Squared statistic
371      */
372     public double getAdjustedRSquared() {
373         return this.globalFitInfo[ ADJRSQ_IDX];
374     }
375 
376     /**
377      * Returns true if the regression model has been computed including an intercept.
378      * In this case, the coefficient of the intercept is the first element of the
379      * {@link #getParameterEstimates() parameter estimates}.
380      * @return true if the model has an intercept term
381      */
382     public boolean hasIntercept() {
383         return this.containsConstant;
384     }
385 
386     /**
387      * Gets the i-jth element of the variance-covariance matrix.
388      *
389      * @param i first variable index
390      * @param j second variable index
391      * @return the requested variance-covariance matrix entry
392      */
393     private double getVcvElement(int i, int j) {
394         if (this.isSymmetricVCD) {
395             if (this.varCovData.length > 1) {
396                 //could be stored in upper or lower triangular
397                 if (i == j) {
398                     return varCovData[i][i];
399                 } else if (i >= varCovData[j].length) {
400                     return varCovData[i][j];
401                 } else {
402                     return varCovData[j][i];
403                 }
404             } else {//could be in single array
405                 if (i > j) {
406                     return varCovData[0][(i + 1) * i / 2 + j];
407                 } else {
408                     return varCovData[0][(j + 1) * j / 2 + i];
409                 }
410             }
411         } else {
412             return this.varCovData[i][j];
413         }
414     }
415 }