View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.optim.nonlinear.vector.leastsquares;
23  
24  import org.hipparchus.linear.RealMatrix;
25  import org.hipparchus.linear.RealVector;
26  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum;
27  import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
28  
29  /**
30   * A pedantic implementation of {@link Optimum}.
31   *
32   */
33  class OptimumImpl implements Optimum {
34  
35      /** abscissa and ordinate */
36      private final Evaluation value;
37      /** number of evaluations to compute this optimum */
38      private final int evaluations;
39      /** number of iterations to compute this optimum */
40      private final int iterations;
41  
42      /**
43       * Construct an optimum from an evaluation and the values of the counters.
44       *
45       * @param value       the function value
46       * @param evaluations number of times the function was evaluated
47       * @param iterations  number of iterations of the algorithm
48       */
49      OptimumImpl(final Evaluation value, final int evaluations, final int iterations) {
50          this.value = value;
51          this.evaluations = evaluations;
52          this.iterations = iterations;
53      }
54  
55      /* auto-generated implementations */
56  
57      /** {@inheritDoc} */
58      @Override
59      public int getEvaluations() {
60          return evaluations;
61      }
62  
63      /** {@inheritDoc} */
64      @Override
65      public int getIterations() {
66          return iterations;
67      }
68  
69      /** {@inheritDoc} */
70      @Override
71      public RealMatrix getCovariances(double threshold) {
72          return value.getCovariances(threshold);
73      }
74  
75      /** {@inheritDoc} */
76      @Override
77      public RealVector getSigma(double covarianceSingularityThreshold) {
78          return value.getSigma(covarianceSingularityThreshold);
79      }
80  
81      /** {@inheritDoc} */
82      @Override
83      public double getRMS() {
84          return value.getRMS();
85      }
86  
87      /** {@inheritDoc} */
88      @Override
89      public RealMatrix getJacobian() {
90          return value.getJacobian();
91      }
92  
93      /** {@inheritDoc} */
94      @Override
95      public double getCost() {
96          return value.getCost();
97      }
98  
99      /** {@inheritDoc} */
100     @Override
101     public double getChiSquare() {
102         return value.getChiSquare();
103     }
104 
105     /** {@inheritDoc} */
106     @Override
107     public double getReducedChiSquare(int n) {
108         return value.getReducedChiSquare(n);
109     }
110 
111     /** {@inheritDoc} */
112     @Override
113     public RealVector getResiduals() {
114         return value.getResiduals();
115     }
116 
117     /** {@inheritDoc} */
118     @Override
119     public RealVector getPoint() {
120         return value.getPoint();
121     }
122 }