View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.optim.nonlinear.vector.constrained;
18  
19  import org.hipparchus.optim.OptimizationData;
20  
21  /** Container for {@link ADMMQPOptimizer} settings.
22   * @since 3.1
23   */
24  public class ADMMQPOption implements OptimizationData {
25  
26      /** Default Absolute and Relative Tolerance for convergence. */
27      public static final double DEFAULT_EPS = 1.0e-5;
28  
29      /** Default Absolute and Relative Tolerance for Infeasible Criteria. */
30      public static final double DEFAULT_EPS_INFEASIBLE = 1.0e-7;
31  
32      /** Default Value of regularization term sigma for Karush–Kuhn–Tucker solver. */
33      public static final double DEFAULT_SIGMA = 1.0e-12;
34  
35      /** Default Value of Alpha filter for ADMM iteration. */
36      public static final double DEFAULT_ALPHA = 1.6;
37  
38      /** Default Value for Enabling Problem Scaling. */
39      public static final boolean DEFAULT_SCALING = true;
40  
41      /** Default Value for the Max Iteration for the scaling. */
42      public static final int DEFAULT_SCALING_MAX_ITERATION = 10;
43  
44      /** Default Value for adapting the weight during iterations. */
45      public static final boolean DEFAULT_RHO_UPDATE = true;
46  
47      /** Default Max Value for the Weight for ADMM iteration. */
48      public static final double DEFAULT_RHO_MAX = 1.0e6;
49  
50      /** Default Min Value for the Weight for ADMM iteration. */
51      public static final double DEFAULT_RHO_MIN = 1.0e-6;
52  
53      /** Default Max number of weight changes. */
54      public static final int DEFAULT_MAX_RHO_ITERATION = 10;
55  
56      /** Default Value for enabling polishing the solution. */
57      public static final boolean DEFAULT_POLISHING = false;
58  
59      /** Default Value for Iteration of polishing Algorithm. */
60      public static final int DEFAULT_POLISHING_ITERATION = 5;
61  
62      /** Absolute and Relative Tolerance for convergence. */
63      private double eps;
64  
65      /** Absolute and Relative Tolerance for Infeasible Criteria. */
66      private double epsInfeasible;
67  
68      /** Value of regularization term sigma for Karush–Kuhn–Tucker solver. */
69      private double sigma;
70  
71      /** Value of alpha filter for ADMM iteration. */
72      private double alpha;
73  
74      /** Scaling enabling flag. */
75      private boolean scaling;
76  
77      /** Value for the Max Iteration for the scaling. */
78      private int scaleMaxIteration;
79  
80      /** Value for adapt the weight during iterations. */
81      private boolean updateRho;
82  
83      /** Max Value for thr Weight for ADMM iteration. */
84      private double rhoMax;
85  
86      /** Min Value for the Weight for ADMM iteration. */
87      private double rhoMin;
88  
89      /** Max Value of changing the weight during iterations. */
90      private int maxRhoIteration;
91  
92      /** Enabling flag for polishing the solution. */
93      private boolean polishing;
94  
95      /** Value for Iteration of polishing Algorithm. */
96      private int polishingIteration;
97  
98      /** Simple constructor.
99       */
100     public ADMMQPOption() {
101         eps                = ADMMQPOption.DEFAULT_EPS;
102         epsInfeasible      = ADMMQPOption.DEFAULT_EPS_INFEASIBLE;
103         sigma              = ADMMQPOption.DEFAULT_SIGMA;
104         alpha              = ADMMQPOption.DEFAULT_ALPHA;
105         scaling            = ADMMQPOption.DEFAULT_SCALING;
106         scaleMaxIteration  = ADMMQPOption.DEFAULT_SCALING_MAX_ITERATION;
107         updateRho = ADMMQPOption.DEFAULT_RHO_UPDATE;
108         rhoMax             = ADMMQPOption.DEFAULT_RHO_MAX;
109         rhoMin             = ADMMQPOption.DEFAULT_RHO_MIN;
110         maxRhoIteration    = ADMMQPOption.DEFAULT_MAX_RHO_ITERATION;
111         polishing          = ADMMQPOption.DEFAULT_POLISHING;
112         polishingIteration = ADMMQPOption.DEFAULT_POLISHING_ITERATION;
113     }
114 
115     /** Set absolute and Relative Tolerance for convergence.
116      * @param eps absolute and Relative Tolerance for convergence
117      */
118     public void setEps(final double eps) {
119         this.eps = eps;
120     }
121 
122     /** Get absolute and Relative Tolerance for convergence.
123      * @return absolute and Relative Tolerance for convergence
124      */
125     public double getEps() {
126         return eps;
127     }
128 
129     /** Set absolute and Relative Tolerance for infeasible criteria.
130      * @param epsInfeasible absolute and Relative Tolerance for infeasible criteria
131      */
132     public void setEpsInfeasible(final double epsInfeasible) {
133         this.epsInfeasible = epsInfeasible;
134     }
135 
136     /** Get absolute and Relative Tolerance for infeasible criteria.
137      * @return absolute and Relative Tolerance for infeasible criteria
138      */
139     public double getEpsInfeasible() {
140         return epsInfeasible;
141     }
142 
143     /** Set value of regularization term sigma for Karush–Kuhn–Tucker solver.
144      * @param sigma value of regularization term sigma for Karush–Kuhn–Tucker solver
145      */
146     public void setSigma(final double sigma) {
147         this.sigma = sigma;
148     }
149 
150     /** Get value of regularization term sigma for Karush–Kuhn–Tucker solver.
151      * @return value of regularization term sigma for Karush–Kuhn–Tucker solver
152      */
153     public double getSigma() {
154         return sigma;
155     }
156 
157     /** Set value of alpha filter for ADMM iteration.
158      * @param alpha value of alpha filter for ADMM iteration
159      */
160     public void setAlpha(final double alpha) {
161         this.alpha = alpha;
162     }
163 
164     /** Get value of alpha filter for ADMM iteration.
165      * @return value of alpha filter for ADMM iteration
166      */
167     public double getAlpha() {
168         return alpha;
169     }
170 
171     /** Set scaling enabling flag.
172      * @param scaling if true, scaling is enabled
173      */
174     public void setScaling(final boolean scaling) {
175         this.scaling = scaling;
176     }
177 
178     /** Check if scaling is enabled.
179      * @return true if scaling is enabled
180      */
181     public boolean isScaling() {
182         return scaling;
183     }
184 
185     /** Set max iteration for the scaling.
186      * @param scaleMaxIteration max iteration for the scaling
187      */
188     public void setScaleMaxIteration(final int scaleMaxIteration) {
189         this.scaleMaxIteration = scaleMaxIteration;
190     }
191 
192     /** Get max iteration for the scaling.
193      * @return max iteration for the scaling
194      */
195     public int getScaleMaxIteration() {
196         return scaleMaxIteration;
197     }
198 
199     /** Set weight updating flag.
200      * @param updateRho if true, weight is updated during iterations
201      */
202     public void setUpdateRho(final boolean updateRho) {
203         this.updateRho = updateRho;
204     }
205 
206     /** Check if weight updating is enabled.
207      * @return true if weight is updated during iterations
208      */
209     public boolean updateRho() {
210         return updateRho;
211     }
212 
213     /** Set min Value for the Weight for ADMM iteration.
214      * @param rhoMin min Value for the Weight for ADMM iteration
215      */
216     public void setRhoMin(final double rhoMin) {
217         this.rhoMin = rhoMin;
218     }
219 
220     /** Get min Value for the Weight for ADMM iteration.
221      * @return min Value for the Weight for ADMM iteration
222      */
223     public double getRhoMin() {
224         return rhoMin;
225     }
226 
227     /** Set max Value for the Weight for ADMM iteration.
228      * @param rhoMax max Value for the Weight for ADMM iteration
229      */
230     public void setRhoMax(final double rhoMax) {
231         this.rhoMax = rhoMax;
232     }
233 
234     /** Get max Value for the Weight for ADMM iteration.
235      * @return max Value for the Weight for ADMM iteration
236      */
237     public double getRhoMax() {
238         return rhoMax;
239     }
240 
241     /** Set max number of weight changes.
242      * @param maxRhoIteration max number of weight changes
243      */
244     public void setMaxRhoIteration(final int maxRhoIteration) {
245         this.maxRhoIteration = maxRhoIteration;
246     }
247 
248     /** Get max number of weight changes.
249      * @return max number of weight changes
250      */
251     public int getMaxRhoIteration() {
252         return maxRhoIteration;
253     }
254 
255     /** Set polishing enabling flag.
256      * @param polishing if true, polishing is enabled
257      */
258     public void setPolishing(final boolean polishing) {
259         this.polishing = polishing;
260     }
261 
262     /** Check if polishing is enabled.
263      * @return true if polishing is enabled
264      */
265     public boolean isPolishing() {
266         return polishing;
267     }
268 
269     /** Set number of iterations of polishing algorithm.
270      * @param polishingIteration number of iterations of polishing algorithm
271      */
272     public void setPolishingIteration(final int polishingIteration) {
273         this.polishingIteration = polishingIteration;
274     }
275 
276     /** Get number of iterations of polishing algorithm.
277      * @return number of iterations of polishing algorithm
278      */
279     public int getPolishIteration() {
280         return polishingIteration;
281     }
282 
283 }