Uses of Interface
org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem
Package
Description
This package provides algorithms that minimize the residuals
between observations and model values.
-
Uses of LeastSquaresProblem in org.hipparchus.optim.nonlinear.vector.leastsquares
Modifier and TypeClassDescriptionclass
An adapter that delegates to another implementation ofLeastSquaresProblem
.Modifier and TypeMethodDescriptionLeastSquaresBuilder.build()
Construct aLeastSquaresProblem
from the data in this builder.static LeastSquaresProblem
LeastSquaresFactory.countEvaluations
(LeastSquaresProblem problem, Incrementor counter) Count the evaluations of a particular problem.static LeastSquaresProblem
LeastSquaresFactory.create
(MultivariateVectorFunction model, MultivariateMatrixFunction jacobian, double[] observed, double[] start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblem
from the given elements.static LeastSquaresProblem
LeastSquaresFactory.create
(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblem
from the given elements.static LeastSquaresProblem
LeastSquaresFactory.create
(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations, boolean lazyEvaluation, ParameterValidator paramValidator) Create aLeastSquaresProblem
from the given elements.static LeastSquaresProblem
LeastSquaresFactory.create
(MultivariateJacobianFunction model, RealVector observed, RealVector start, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblem
from the given elements.static LeastSquaresProblem
LeastSquaresFactory.weightDiagonal
(LeastSquaresProblem problem, RealVector weights) Apply a diagonal weight matrix to theLeastSquaresProblem
.static LeastSquaresProblem
LeastSquaresFactory.weightMatrix
(LeastSquaresProblem problem, RealMatrix weights) Apply a dense weight matrix to theLeastSquaresProblem
.Modifier and TypeMethodDescriptionstatic LeastSquaresProblem
LeastSquaresFactory.countEvaluations
(LeastSquaresProblem problem, Incrementor counter) Count the evaluations of a particular problem.GaussNewtonOptimizer.optimize
(LeastSquaresProblem lsp) Solve the non-linear least squares problem.LeastSquaresOptimizer.optimize
(LeastSquaresProblem leastSquaresProblem) Solve the non-linear least squares problem.LevenbergMarquardtOptimizer.optimize
(LeastSquaresProblem problem) Solve the non-linear least squares problem.SequentialGaussNewtonOptimizer.optimize
(LeastSquaresProblem lsp) Solve the non-linear least squares problem.static LeastSquaresProblem
LeastSquaresFactory.weightDiagonal
(LeastSquaresProblem problem, RealVector weights) Apply a diagonal weight matrix to theLeastSquaresProblem
.static LeastSquaresProblem
LeastSquaresFactory.weightMatrix
(LeastSquaresProblem problem, RealMatrix weights) Apply a dense weight matrix to theLeastSquaresProblem
.ModifierConstructorDescriptionLeastSquaresAdapter
(LeastSquaresProblem problem) Delegate theLeastSquaresProblem
interface to the given implementation.