View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  
23  package org.hipparchus.ode.nonstiff;
24  
25  import org.hipparchus.CalculusFieldElement;
26  import org.hipparchus.Field;
27  import org.hipparchus.exception.MathIllegalArgumentException;
28  import org.hipparchus.exception.MathIllegalStateException;
29  import org.hipparchus.ode.FieldEquationsMapper;
30  import org.hipparchus.ode.FieldExpandableODE;
31  import org.hipparchus.ode.FieldODEState;
32  import org.hipparchus.ode.FieldODEStateAndDerivative;
33  import org.hipparchus.ode.nonstiff.interpolators.RungeKuttaFieldStateInterpolator;
34  import org.hipparchus.util.FastMath;
35  import org.hipparchus.util.MathArrays;
36  import org.hipparchus.util.MathUtils;
37  
38  /**
39   * This class implements the common part of all embedded Runge-Kutta
40   * integrators for Ordinary Differential Equations.
41   *
42   * <p>These methods are embedded explicit Runge-Kutta methods with two
43   * sets of coefficients allowing to estimate the error, their Butcher
44   * arrays are as follows :</p>
45   * <pre>
46   *    0  |
47   *   c2  | a21
48   *   c3  | a31  a32
49   *   ... |        ...
50   *   cs  | as1  as2  ...  ass-1
51   *       |--------------------------
52   *       |  b1   b2  ...   bs-1  bs
53   *       |  b'1  b'2 ...   b's-1 b's
54   * </pre>
55   *
56   * <p>In fact, we rather use the array defined by ej = bj - b'j to
57   * compute directly the error rather than computing two estimates and
58   * then comparing them.</p>
59   *
60   * <p>Some methods are qualified as <i>fsal</i> (first same as last)
61   * methods. This means the last evaluation of the derivatives in one
62   * step is the same as the first in the next step. Then, this
63   * evaluation can be reused from one step to the next one and the cost
64   * of such a method is really s-1 evaluations despite the method still
65   * has s stages. This behaviour is true only for successful steps, if
66   * the step is rejected after the error estimation phase, no
67   * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
68   * asi = bi for all i.</p>
69   *
70   * @param <T> the type of the field elements
71   */
72  
73  public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>
74      extends AdaptiveStepsizeFieldIntegrator<T>
75      implements FieldExplicitRungeKuttaIntegrator<T> {
76  
77      /** Index of the pre-computed derivative for <i>fsal</i> methods. */
78      private final int fsal;
79  
80      /** Time steps from Butcher array (without the first zero). */
81      private final T[] c;
82  
83      /** Internal weights from Butcher array (without the first empty row). */
84      private final T[][] a;
85  
86      /** External weights for the high order method from Butcher array. */
87      private final T[] b;
88  
89      /** Time steps from Butcher array (without the first zero). */
90      private double[] realC = new double[0];
91  
92      /** Internal weights from Butcher array (without the first empty row). Real version, optional. */
93      private double[][] realA = new double[0][];
94  
95      /** External weights for the high order method from Butcher array. Real version, optional. */
96      private double[] realB = new double[0];
97  
98      /** Stepsize control exponent. */
99      private final double exp;
100 
101     /** Safety factor for stepsize control. */
102     private T safety;
103 
104     /** Minimal reduction factor for stepsize control. */
105     private T minReduction;
106 
107     /** Maximal growth factor for stepsize control. */
108     private T maxGrowth;
109 
110     /** Flag setting whether coefficients in Butcher array are interpreted as Field or real numbers. */
111     private boolean usingFieldCoefficients;
112 
113     /** Build a Runge-Kutta integrator with the given Butcher array.
114      * @param field field to which the time and state vector elements belong
115      * @param name name of the method
116      * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
117      * or -1 if method is not <i>fsal</i>
118      * @param minStep minimal step (sign is irrelevant, regardless of
119      * integration direction, forward or backward), the last step can
120      * be smaller than this
121      * @param maxStep maximal step (sign is irrelevant, regardless of
122      * integration direction, forward or backward), the last step can
123      * be smaller than this
124      * @param scalAbsoluteTolerance allowed absolute error
125      * @param scalRelativeTolerance allowed relative error
126      */
127     protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
128                                                 final double minStep, final double maxStep,
129                                                 final double scalAbsoluteTolerance,
130                                                 final double scalRelativeTolerance) {
131 
132         super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
133 
134         this.fsal = fsal;
135         this.c    = getC();
136         this.a    = getA();
137         this.b    = getB();
138 
139         exp = -1.0 / getOrder();
140 
141         // set the default values of the algorithm control parameters
142         setSafety(field.getZero().add(0.9));
143         setMinReduction(field.getZero().add(0.2));
144         setMaxGrowth(field.getZero().add(10.0));
145 
146     }
147 
148     /** Build a Runge-Kutta integrator with the given Butcher array.
149      * @param field field to which the time and state vector elements belong
150      * @param name name of the method
151      * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
152      * or -1 if method is not <i>fsal</i>
153      * @param minStep minimal step (must be positive even for backward
154      * integration), the last step can be smaller than this
155      * @param maxStep maximal step (must be positive even for backward
156      * integration)
157      * @param vecAbsoluteTolerance allowed absolute error
158      * @param vecRelativeTolerance allowed relative error
159      */
160     protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
161                                                 final double   minStep, final double maxStep,
162                                                 final double[] vecAbsoluteTolerance,
163                                                 final double[] vecRelativeTolerance) {
164 
165         super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
166         this.usingFieldCoefficients = false;
167 
168         this.fsal = fsal;
169         this.c    = getC();
170         this.a    = getA();
171         this.b    = getB();
172 
173         exp = -1.0 / getOrder();
174 
175         // set the default values of the algorithm control parameters
176         setSafety(field.getZero().add(0.9));
177         setMinReduction(field.getZero().add(0.2));
178         setMaxGrowth(field.getZero().add(10.0));
179 
180     }
181 
182     /** Create an interpolator.
183      * @param forward integration direction indicator
184      * @param yDotK slopes at the intermediate points
185      * @param globalPreviousState start of the global step
186      * @param globalCurrentState end of the global step
187      * @param mapper equations mapper for the all equations
188      * @return external weights for the high order method from Butcher array
189      */
190     protected abstract RungeKuttaFieldStateInterpolator<T> createInterpolator(boolean forward, T[][] yDotK,
191                                                                               FieldODEStateAndDerivative<T> globalPreviousState,
192                                                                               FieldODEStateAndDerivative<T> globalCurrentState,
193                                                                               FieldEquationsMapper<T> mapper);
194 
195     /** Get the order of the method.
196      * @return order of the method
197      */
198     public abstract int getOrder();
199 
200     /** Get the safety factor for stepsize control.
201      * @return safety factor
202      */
203     public T getSafety() {
204         return safety;
205     }
206 
207     /** Set the safety factor for stepsize control.
208      * @param safety safety factor
209      */
210     public void setSafety(final T safety) {
211         this.safety = safety;
212     }
213 
214     /**
215      * Setter for the flag between real or Field coefficients in the Butcher array.
216      *
217      * @param usingFieldCoefficients new value for flag
218      */
219     public void setUsingFieldCoefficients(boolean usingFieldCoefficients) {
220         this.usingFieldCoefficients = usingFieldCoefficients;
221     }
222 
223     /** {@inheritDoc} */
224     @Override
225     public boolean isUsingFieldCoefficients() {
226         return usingFieldCoefficients;
227     }
228 
229     /** {@inheritDoc} */
230     @Override
231     public int getNumberOfStages() {
232         return b.length;
233     }
234 
235     /** {@inheritDoc} */
236     @Override
237     protected FieldODEStateAndDerivative<T> initIntegration(FieldExpandableODE<T> eqn, FieldODEState<T> s0, T t) {
238         if (!isUsingFieldCoefficients()) {
239             realA = getRealA();
240             realB = getRealB();
241             realC = getRealC();
242         }
243         return super.initIntegration(eqn, s0, t);
244     }
245 
246     /** {@inheritDoc} */
247     @Override
248     public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
249                                                    final FieldODEState<T> initialState, final T finalTime)
250         throws MathIllegalArgumentException, MathIllegalStateException {
251 
252         sanityChecks(initialState, finalTime);
253         setStepStart(initIntegration(equations, initialState, finalTime));
254         final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
255 
256         // create some internal working arrays
257         final int   stages = getNumberOfStages();
258         final T[][] yDotK  = MathArrays.buildArray(getField(), stages, -1);
259         T[]   yTmp   = MathArrays.buildArray(getField(), equations.getMapper().getTotalDimension());
260 
261         // set up integration control objects
262         T  hNew           = getField().getZero();
263         boolean firstTime = true;
264 
265         // main integration loop
266         setIsLastStep(false);
267         do {
268 
269             // iterate over step size, ensuring local normalized error is smaller than 1
270             double error = 10.0;
271             while (error >= 1.0) {
272 
273                 // first stage
274                 final T[] y = getStepStart().getCompleteState();
275                 yDotK[0] = getStepStart().getCompleteDerivative();
276 
277                 if (firstTime) {
278                     final StepsizeHelper helper = getStepSizeHelper();
279                     final T[] scale = MathArrays.buildArray(getField(), helper.getMainSetDimension());
280                     for (int i = 0; i < scale.length; ++i) {
281                         scale[i] = helper.getTolerance(i, y[i].abs());
282                     }
283                     hNew = getField().getZero().add(initializeStep(forward, getOrder(), scale, getStepStart()));
284                     firstTime = false;
285                 }
286 
287                 setStepSize(hNew);
288                 if (forward) {
289                     if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() >= 0) {
290                         setStepSize(finalTime.subtract(getStepStart().getTime()));
291                     }
292                 } else {
293                     if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() <= 0) {
294                         setStepSize(finalTime.subtract(getStepStart().getTime()));
295                     }
296                 }
297 
298                 // next stages
299                 if (isUsingFieldCoefficients()) {
300                     FieldExplicitRungeKuttaIntegrator.applyInternalButcherWeights(getEquations(),
301                             getStepStart().getTime(), y, getStepSize(), a, c, yDotK);
302                     yTmp = FieldExplicitRungeKuttaIntegrator.applyExternalButcherWeights(y, yDotK, getStepSize(), b);
303                 } else {
304                     FieldExplicitRungeKuttaIntegrator.applyInternalButcherWeights(getEquations(),
305                             getStepStart().getTime(), y, getStepSize(), realA, realC, yDotK);
306                     yTmp = FieldExplicitRungeKuttaIntegrator.applyExternalButcherWeights(y, yDotK, getStepSize(), realB);
307                 }
308 
309                 incrementEvaluations(stages - 1);
310 
311                 // estimate the error at the end of the step
312                 error = estimateError(yDotK, y, yTmp, getStepSize());
313                 if (error >= 1.0) {
314                     // reject the step and attempt to reduce error by stepsize control
315                     final T factor = MathUtils.min(maxGrowth,
316                                                    MathUtils.max(minReduction, safety.multiply(FastMath.pow(error, exp))));
317                     hNew = getStepSizeHelper().filterStep(getStepSize().multiply(factor), forward, false);
318                 }
319 
320             }
321             final T   stepEnd = getStepStart().getTime().add(getStepSize());
322             final T[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
323             final FieldODEStateAndDerivative<T> stateTmp = equations.getMapper().mapStateAndDerivative(stepEnd, yTmp, yDotTmp);
324 
325             // local error is small enough: accept the step, trigger events and step handlers
326             setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
327                                     finalTime));
328 
329             if (!isLastStep()) {
330 
331                 // stepsize control for next step
332                 final T factor = MathUtils.min(maxGrowth,
333                                                MathUtils.max(minReduction, safety.multiply(FastMath.pow(error, exp))));
334                 final T  scaledH    = getStepSize().multiply(factor);
335                 final T  nextT      = getStepStart().getTime().add(scaledH);
336                 final boolean nextIsLast = forward ?
337                                            nextT.subtract(finalTime).getReal() >= 0 :
338                                            nextT.subtract(finalTime).getReal() <= 0;
339                 hNew = getStepSizeHelper().filterStep(scaledH, forward, nextIsLast);
340 
341                 final T  filteredNextT      = getStepStart().getTime().add(hNew);
342                 final boolean filteredNextIsLast = forward ?
343                                                    filteredNextT.subtract(finalTime).getReal() >= 0 :
344                                                    filteredNextT.subtract(finalTime).getReal() <= 0;
345                 if (filteredNextIsLast) {
346                     hNew = finalTime.subtract(getStepStart().getTime());
347                 }
348 
349             }
350 
351         } while (!isLastStep());
352 
353         final FieldODEStateAndDerivative<T> finalState = getStepStart();
354         resetInternalState();
355         return finalState;
356 
357     }
358 
359     /** Get the minimal reduction factor for stepsize control.
360      * @return minimal reduction factor
361      */
362     public T getMinReduction() {
363         return minReduction;
364     }
365 
366     /** Set the minimal reduction factor for stepsize control.
367      * @param minReduction minimal reduction factor
368      */
369     public void setMinReduction(final T minReduction) {
370         this.minReduction = minReduction;
371     }
372 
373     /** Get the maximal growth factor for stepsize control.
374      * @return maximal growth factor
375      */
376     public T getMaxGrowth() {
377         return maxGrowth;
378     }
379 
380     /** Set the maximal growth factor for stepsize control.
381      * @param maxGrowth maximal growth factor
382      */
383     public void setMaxGrowth(final T maxGrowth) {
384         this.maxGrowth = maxGrowth;
385     }
386 
387     /** Compute the error ratio.
388      * @param yDotK derivatives computed during the first stages
389      * @param y0 estimate of the step at the start of the step
390      * @param y1 estimate of the step at the end of the step
391      * @param h  current step
392      * @return error ratio, greater than 1 if step should be rejected
393      */
394     protected abstract double estimateError(T[][] yDotK, T[] y0, T[] y1, T h);
395 
396 }