1 /* 2 * Licensed to the Hipparchus project under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.hipparchus.ode; 18 19 import java.util.ArrayList; 20 import java.util.List; 21 22 import org.hipparchus.exception.MathIllegalArgumentException; 23 import org.hipparchus.exception.MathIllegalStateException; 24 25 26 /** 27 * This class represents a combined set of first order differential equations, 28 * with at least a primary set of equations expandable by some sets of secondary 29 * equations. 30 * <p> 31 * One typical use case is the computation of the Jacobian matrix for some ODE. 32 * In this case, the primary set of equations corresponds to the raw ODE, and we 33 * add to this set another bunch of secondary equations which represent the Jacobian 34 * matrix of the primary set. 35 * </p> 36 * <p> 37 * We want the integrator to use <em>only</em> the primary set to estimate the 38 * errors and hence the step sizes. It should <em>not</em> use the secondary 39 * equations in this computation. The {@link AbstractIntegrator integrator} will 40 * be able to know where the primary set ends and so where the secondary sets begin. 41 * </p> 42 * 43 * @see OrdinaryDifferentialEquation 44 * @see VariationalEquation 45 * 46 */ 47 48 public class ExpandableODE { 49 50 /** Primary differential equation. */ 51 private final OrdinaryDifferentialEquation primary; 52 53 /** Components of the expandable ODE. */ 54 private List<SecondaryODE> components; 55 56 /** Mapper for all equations. */ 57 private EquationsMapper mapper; 58 59 /** Build an expandable set from its primary ODE set. 60 * @param primary the primary set of differential equations to be integrated. 61 */ 62 public ExpandableODE(final OrdinaryDifferentialEquation primary) { 63 this.primary = primary; 64 this.components = new ArrayList<>(); 65 this.mapper = new EquationsMapper(null, primary.getDimension()); 66 } 67 68 /** Get the primary set of differential equations to be integrated. 69 * @return primary set of differential equations to be integrated 70 */ 71 public OrdinaryDifferentialEquation getPrimary() { 72 return primary; 73 } 74 75 /** Get the mapper for the set of equations. 76 * @return mapper for the set of equations 77 */ 78 public EquationsMapper getMapper() { 79 return mapper; 80 } 81 82 /** Add a set of secondary equations to be integrated along with the primary set. 83 * @param secondary secondary equations set 84 * @return index of the secondary equation in the expanded state, to be used 85 * as the parameter to {@link FieldODEState#getSecondaryState(int)} and 86 * {@link FieldODEStateAndDerivative#getSecondaryDerivative(int)} (beware index 87 * 0 corresponds to primary state, secondary states start at 1) 88 */ 89 public int addSecondaryEquations(final SecondaryODE secondary) { 90 91 components.add(secondary); 92 mapper = new EquationsMapper(mapper, secondary.getDimension()); 93 94 return components.size(); 95 96 } 97 98 /** Initialize equations at the start of an ODE integration. 99 * @param s0 state at integration start 100 * @param finalTime target time for the integration 101 * @exception MathIllegalStateException if the number of functions evaluations is exceeded 102 * @exception MathIllegalArgumentException if arrays dimensions do not match equations settings 103 */ 104 public void init(final ODEState s0, final double finalTime) { 105 106 final double t0 = s0.getTime(); 107 108 // initialize primary equations 109 final double[] primary0 = s0.getPrimaryState(); 110 primary.init(t0, primary0, finalTime); 111 112 // initialize secondary equations 113 for (int index = 1; index < mapper.getNumberOfEquations(); ++index) { 114 final double[] secondary0 = s0.getSecondaryState(index); 115 components.get(index - 1).init(t0, primary0, secondary0, finalTime); 116 } 117 118 } 119 120 /** Get the current time derivative of the complete state vector. 121 * @param t current value of the independent <I>time</I> variable 122 * @param y array containing the current value of the complete state vector 123 * @return time derivative of the complete state vector 124 * @exception MathIllegalStateException if the number of functions evaluations is exceeded 125 * @exception MathIllegalArgumentException if arrays dimensions do not match equations settings 126 */ 127 public double[] computeDerivatives(final double t, final double[] y) 128 throws MathIllegalArgumentException, MathIllegalStateException { 129 130 final double[] yDot = new double[mapper.getTotalDimension()]; 131 132 // compute derivatives of the primary equations 133 final double[] primaryState = mapper.extractEquationData(0, y); 134 final double[] primaryStateDot = primary.computeDerivatives(t, primaryState); 135 136 // Add contribution for secondary equations 137 for (int index = 1; index < mapper.getNumberOfEquations(); ++index) { 138 final double[] componentState = mapper.extractEquationData(index, y); 139 final double[] componentStateDot = components.get(index - 1).computeDerivatives(t, primaryState, primaryStateDot, 140 componentState); 141 mapper.insertEquationData(index, componentStateDot, yDot); 142 } 143 144 // we retrieve the primaryStateDot array after the secondary equations have 145 // been computed in case they change the main state derivatives; this happens 146 // for example in optimal control when the secondary equations handle co-state, 147 // which changes control, and the control changes the primary state 148 mapper.insertEquationData(0, primaryStateDot, yDot); 149 150 return yDot; 151 152 } 153 154 }