View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * This is not the original file distributed by the Apache Software Foundation
20   * It has been modified by the Hipparchus project
21   */
22  package org.hipparchus.geometry.euclidean.twod;
23  
24  import org.hipparchus.util.FastMath;
25  
26  /** Simple container for a two-points segment.
27   */
28  public class Segment {
29  
30      /** Start point of the segment. */
31      private final Vector2D start;
32  
33      /** End point of the segment. */
34      private final Vector2D end;
35  
36      /** Line containing the segment. */
37      private final Line     line;
38  
39      /** Build a segment.
40       * @param start start point of the segment
41       * @param end end point of the segment
42       * @param tolerance of the line.
43       */
44      public Segment(final Vector2D start, final Vector2D end, final double tolerance) {
45          this(start, end, new Line(start, end, tolerance));
46      }
47  
48      /** Build a segment.
49       * @param start start point of the segment
50       * @param end end point of the segment
51       * @param line line containing the segment
52       */
53      public Segment(final Vector2D start, final Vector2D end, final Line line) {
54          this.start  = start;
55          this.end    = end;
56          this.line   = line;
57      }
58  
59      /** Get the start point of the segment.
60       * @return start point of the segment
61       */
62      public Vector2D getStart() {
63          return start;
64      }
65  
66      /** Get the end point of the segment.
67       * @return end point of the segment
68       */
69      public Vector2D getEnd() {
70          return end;
71      }
72  
73      /** Get the line containing the segment.
74       * @return line containing the segment
75       */
76      public Line getLine() {
77          return line;
78      }
79  
80      /**
81       * Get the length of the line segment.
82       *
83       * @return line segment length.
84       */
85      public double getLength() {
86          return getEnd().distance(getStart());
87      }
88  
89      /** Calculates the shortest distance from a point to this line segment.
90       * <p>
91       * If the perpendicular extension from the point to the line does not
92       * cross in the bounds of the line segment, the shortest distance to
93       * the two end points will be returned.
94       * </p>
95       *
96       * Algorithm adapted from:
97       * <a href="http://www.codeguru.com/forum/printthread.php?s=cc8cf0596231f9a7dba4da6e77c29db3&amp;t=194400&amp;pp=15&amp;page=1">
98       * Thread @ Codeguru</a>
99       *
100      * @param p to check
101      * @return distance between the instance and the point
102      */
103     public double distance(final Vector2D p) {
104         final double deltaX = end.getX() - start.getX();
105         final double deltaY = end.getY() - start.getY();
106 
107         final double r = ((p.getX() - start.getX()) * deltaX + (p.getY() - start.getY()) * deltaY) /
108                          (deltaX * deltaX + deltaY * deltaY);
109 
110         // r == 0 => P = startPt
111         // r == 1 => P = endPt
112         // r < 0 => P is on the backward extension of the segment
113         // r > 1 => P is on the forward extension of the segment
114         // 0 < r < 1 => P is on the segment
115 
116         // if point isn't on the line segment, just return the shortest distance to the end points
117         if (r < 0 || r > 1) {
118             final double dist1 = getStart().distance(p);
119             final double dist2 = getEnd().distance(p);
120 
121             return FastMath.min(dist1, dist2);
122         }
123         else {
124             // find point on the line and see if it is in the line segment
125             final double px = start.getX() + r * deltaX;
126             final double py = start.getY() + r * deltaY;
127 
128             final Vector2D interPt = new Vector2D(px, py);
129             return interPt.distance(p);
130         }
131     }
132 }