LinearKalmanFilter.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.filtering.kalman.linear;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.filtering.kalman.AbstractKalmanFilter;
- import org.hipparchus.filtering.kalman.Measurement;
- import org.hipparchus.filtering.kalman.ProcessEstimate;
- import org.hipparchus.linear.MatrixDecomposer;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.linear.RealVector;
- /**
- * Kalman filter for {@link LinearProcess linear process}.
- * @param <T> the type of the measurements
- * @since 1.3
- */
- public class LinearKalmanFilter<T extends Measurement> extends AbstractKalmanFilter<T> {
- /** Process to be estimated. */
- private final LinearProcess<T> process;
- /** Simple constructor.
- * @param decomposer decomposer to use for the correction phase
- * @param process linear process to estimate
- * @param initialState initial state
- */
- public LinearKalmanFilter(final MatrixDecomposer decomposer,
- final LinearProcess<T> process,
- final ProcessEstimate initialState) {
- super(decomposer, initialState);
- this.process = process;
- }
- /** {@inheritDoc} */
- @Override
- public ProcessEstimate estimationStep(final T measurement)
- throws MathRuntimeException {
- final LinearEvolution evolution = process.getEvolution(measurement);
- // prediction phase
- final RealMatrix a = evolution.getStateTransitionMatrix();
- final RealMatrix b = evolution.getControlMatrix();
- final RealVector u = (b == null) ? null : evolution.getCommand();
- final RealMatrix q = evolution.getProcessNoiseMatrix();
- RealVector predXk = a.operate(getCorrected().getState());
- if (b != null) {
- predXk = predXk.add(b.operate(u));
- }
- predict(measurement.getTime(), predXk, a, q);
- // correction phase
- final RealMatrix h = evolution.getMeasurementJacobian();
- final RealMatrix s = computeInnovationCovarianceMatrix(measurement.getCovariance(), h);
- final RealVector innovation = (h == null) ? null : measurement.getValue().subtract(h.operate(predXk));
- correct(measurement, a, innovation, h, s);
- if (getObserver() != null) {
- getObserver().updatePerformed(this);
- }
- return getCorrected();
- }
- }