View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.util;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.exception.LocalizedCoreFormats;
21  import org.hipparchus.exception.MathIllegalStateException;
22  
23  /**
24   * Provides a generic means to evaluate continued fractions.  Subclasses simply
25   * provided the a and b coefficients to evaluate the continued fraction.
26   * <p>
27   * References:
28   * <ul>
29   * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
30   * Continued Fraction</a></li>
31   * </ul>
32   *
33   */
34  public abstract class FieldContinuedFraction {
35      /** Maximum allowed numerical error. */
36      private static final double DEFAULT_EPSILON = 10e-9;
37  
38      /**
39       * Default constructor.
40       */
41      protected FieldContinuedFraction() {
42          super();
43      }
44  
45      /**
46       * Access the n-th a coefficient of the continued fraction.  Since a can be
47       * a function of the evaluation point, x, that is passed in as well.
48       * @param n the coefficient index to retrieve.
49       * @param x the evaluation point.
50       * @param <T> type of the field elements.
51       * @return the n-th a coefficient.
52       */
53      public abstract <T extends CalculusFieldElement<T>> T getA(int n, T x);
54  
55      /**
56       * Access the n-th b coefficient of the continued fraction.  Since b can be
57       * a function of the evaluation point, x, that is passed in as well.
58       * @param n the coefficient index to retrieve.
59       * @param x the evaluation point.
60       * @param <T> type of the field elements.
61       * @return the n-th b coefficient.
62       */
63      public abstract <T extends CalculusFieldElement<T>> T getB(int n, T x);
64  
65      /**
66       * Evaluates the continued fraction at the value x.
67       * @param x the evaluation point.
68       * @param <T> type of the field elements.
69       * @return the value of the continued fraction evaluated at x.
70       * @throws MathIllegalStateException if the algorithm fails to converge.
71       */
72      public <T extends CalculusFieldElement<T>> T evaluate(T x) throws MathIllegalStateException {
73          return evaluate(x, DEFAULT_EPSILON, Integer.MAX_VALUE);
74      }
75  
76      /**
77       * Evaluates the continued fraction at the value x.
78       * @param x the evaluation point.
79       * @param epsilon maximum error allowed.
80       * @param <T> type of the field elements.
81       * @return the value of the continued fraction evaluated at x.
82       * @throws MathIllegalStateException if the algorithm fails to converge.
83       */
84      public <T extends CalculusFieldElement<T>> T evaluate(T x, double epsilon) throws MathIllegalStateException {
85          return evaluate(x, epsilon, Integer.MAX_VALUE);
86      }
87  
88      /**
89       * Evaluates the continued fraction at the value x.
90       * @param x the evaluation point.
91       * @param maxIterations maximum number of convergents
92       * @param <T> type of the field elements.
93       * @return the value of the continued fraction evaluated at x.
94       * @throws MathIllegalStateException if the algorithm fails to converge.
95       * @throws MathIllegalStateException if maximal number of iterations is reached
96       */
97      public <T extends CalculusFieldElement<T>> T evaluate(T x, int maxIterations)
98          throws MathIllegalStateException {
99          return evaluate(x, DEFAULT_EPSILON, maxIterations);
100     }
101 
102     /**
103      * Evaluates the continued fraction at the value x.
104      * <p>
105      * The implementation of this method is based on the modified Lentz algorithm as described
106      * on page 18 ff. in:
107      * </p>
108      * <ul>
109      *   <li>
110      *   I. J. Thompson,  A. R. Barnett. "Coulomb and Bessel Functions of Complex Arguments and Order."
111      *   <a target="_blank" href="http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf">
112      *   http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf</a>
113      *   </li>
114      * </ul>
115      * <p>
116      * <b>Note:</b> the implementation uses the terms a<sub>i</sub> and b<sub>i</sub> as defined in
117      * <a href="http://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction @ MathWorld</a>.
118      * </p>
119      *
120      * @param x the evaluation point.
121      * @param epsilon maximum error allowed.
122      * @param maxIterations maximum number of convergents
123      * @param <T> type of the field elements.
124      * @return the value of the continued fraction evaluated at x.
125      * @throws MathIllegalStateException if the algorithm fails to converge.
126      * @throws MathIllegalStateException if maximal number of iterations is reached
127      */
128     public <T extends CalculusFieldElement<T>> T evaluate(T x, double epsilon, int maxIterations)
129         throws MathIllegalStateException {
130         final T zero = x.getField().getZero();
131         final T one  = x.getField().getOne();
132 
133         final double small      = 1e-50;
134         final T      smallField = one.multiply(small);
135 
136         T hPrev = getA(0, x);
137 
138         // use the value of small as epsilon criteria for zero checks
139         if (Precision.equals(hPrev.getReal(), 0.0, small)) {
140             hPrev = one.multiply(small);
141         }
142 
143         int n     = 1;
144         T   dPrev = zero;
145         T   cPrev = hPrev;
146         T   hN    = hPrev;
147 
148         while (n < maxIterations) {
149             final T a = getA(n, x);
150             final T b = getB(n, x);
151 
152             T dN = a.add(b.multiply(dPrev));
153             if (Precision.equals(dN.getReal(), 0.0, small)) {
154                 dN = smallField;
155             }
156             T cN = a.add(b.divide(cPrev));
157             if (Precision.equals(cN.getReal(), 0.0, small)) {
158                 cN = smallField;
159             }
160 
161             dN = dN.reciprocal();
162             final T deltaN = cN.multiply(dN);
163             hN = hPrev.multiply(deltaN);
164 
165             if (hN.isInfinite()) {
166                 throw new MathIllegalStateException(LocalizedCoreFormats.CONTINUED_FRACTION_INFINITY_DIVERGENCE, x);
167             }
168             if (hN.isNaN()) {
169                 throw new MathIllegalStateException(LocalizedCoreFormats.CONTINUED_FRACTION_NAN_DIVERGENCE, x);
170             }
171 
172             if (deltaN.subtract(1.0).abs().getReal() < epsilon) {
173                 break;
174             }
175 
176             dPrev = dN;
177             cPrev = cN;
178             hPrev = hN;
179             n++;
180         }
181 
182         if (n >= maxIterations) {
183             throw new MathIllegalStateException(LocalizedCoreFormats.NON_CONVERGENT_CONTINUED_FRACTION,
184                                                 maxIterations, x);
185         }
186 
187         return hN;
188     }
189 
190 }