1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.util; 23 24 import org.hipparchus.exception.LocalizedCoreFormats; 25 import org.hipparchus.exception.MathIllegalStateException; 26 27 /** 28 * Provides a generic means to evaluate continued fractions. Subclasses simply 29 * provided the a and b coefficients to evaluate the continued fraction. 30 * <p> 31 * References: 32 * <ul> 33 * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html"> 34 * Continued Fraction</a></li> 35 * </ul> 36 */ 37 public abstract class ContinuedFraction { 38 /** Maximum allowed numerical error. */ 39 private static final double DEFAULT_EPSILON = 10e-9; 40 41 /** 42 * Default constructor. 43 */ 44 protected ContinuedFraction() { 45 super(); 46 } 47 48 /** 49 * Access the n-th a coefficient of the continued fraction. Since a can be 50 * a function of the evaluation point, x, that is passed in as well. 51 * @param n the coefficient index to retrieve. 52 * @param x the evaluation point. 53 * @return the n-th a coefficient. 54 */ 55 protected abstract double getA(int n, double x); 56 57 /** 58 * Access the n-th b coefficient of the continued fraction. Since b can be 59 * a function of the evaluation point, x, that is passed in as well. 60 * @param n the coefficient index to retrieve. 61 * @param x the evaluation point. 62 * @return the n-th b coefficient. 63 */ 64 protected abstract double getB(int n, double x); 65 66 /** 67 * Evaluates the continued fraction at the value x. 68 * @param x the evaluation point. 69 * @return the value of the continued fraction evaluated at x. 70 * @throws MathIllegalStateException if the algorithm fails to converge. 71 */ 72 public double evaluate(double x) throws MathIllegalStateException { 73 return evaluate(x, DEFAULT_EPSILON, Integer.MAX_VALUE); 74 } 75 76 /** 77 * Evaluates the continued fraction at the value x. 78 * @param x the evaluation point. 79 * @param epsilon maximum error allowed. 80 * @return the value of the continued fraction evaluated at x. 81 * @throws MathIllegalStateException if the algorithm fails to converge. 82 */ 83 public double evaluate(double x, double epsilon) throws MathIllegalStateException { 84 return evaluate(x, epsilon, Integer.MAX_VALUE); 85 } 86 87 /** 88 * Evaluates the continued fraction at the value x. 89 * @param x the evaluation point. 90 * @param maxIterations maximum number of convergents 91 * @return the value of the continued fraction evaluated at x. 92 * @throws MathIllegalStateException if the algorithm fails to converge. 93 * @throws MathIllegalStateException if maximal number of iterations is reached 94 */ 95 public double evaluate(double x, int maxIterations) 96 throws MathIllegalStateException { 97 return evaluate(x, DEFAULT_EPSILON, maxIterations); 98 } 99 100 /** 101 * Evaluates the continued fraction at the value x. 102 * <p> 103 * The implementation of this method is based on the modified Lentz algorithm as described 104 * on page 18 ff. in: 105 * </p> 106 * <ul> 107 * <li> 108 * I. J. Thompson, A. R. Barnett. "Coulomb and Bessel Functions of Complex Arguments and Order." 109 * <a target="_blank" href="http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf"> 110 * http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf</a> 111 * </li> 112 * </ul> 113 * <p> 114 * <b>Note:</b> the implementation uses the terms a<sub>i</sub> and b<sub>i</sub> as defined in 115 * <a href="http://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction @ MathWorld</a>. 116 * </p> 117 * 118 * @param x the evaluation point. 119 * @param epsilon maximum error allowed. 120 * @param maxIterations maximum number of convergents 121 * @return the value of the continued fraction evaluated at x. 122 * @throws MathIllegalStateException if the algorithm fails to converge. 123 * @throws MathIllegalStateException if maximal number of iterations is reached 124 */ 125 public double evaluate(double x, double epsilon, int maxIterations) 126 throws MathIllegalStateException { 127 final double small = 1e-50; 128 double hPrev = getA(0, x); 129 130 // use the value of small as epsilon criteria for zero checks 131 if (Precision.equals(hPrev, 0.0, small)) { 132 hPrev = small; 133 } 134 135 int n = 1; 136 double dPrev = 0.0; 137 double cPrev = hPrev; 138 double hN = hPrev; 139 140 while (n < maxIterations) { 141 final double a = getA(n, x); 142 final double b = getB(n, x); 143 144 double dN = a + b * dPrev; 145 if (Precision.equals(dN, 0.0, small)) { 146 dN = small; 147 } 148 double cN = a + b / cPrev; 149 if (Precision.equals(cN, 0.0, small)) { 150 cN = small; 151 } 152 153 dN = 1 / dN; 154 final double deltaN = cN * dN; 155 hN = hPrev * deltaN; 156 157 if (Double.isInfinite(hN)) { 158 throw new MathIllegalStateException(LocalizedCoreFormats.CONTINUED_FRACTION_INFINITY_DIVERGENCE, x); 159 } 160 if (Double.isNaN(hN)) { 161 throw new MathIllegalStateException(LocalizedCoreFormats.CONTINUED_FRACTION_NAN_DIVERGENCE, x); 162 } 163 164 if (FastMath.abs(deltaN - 1.0) < epsilon) { 165 break; 166 } 167 168 dPrev = dN; 169 cPrev = cN; 170 hPrev = hN; 171 n++; 172 } 173 174 if (n >= maxIterations) { 175 throw new MathIllegalStateException(LocalizedCoreFormats.NON_CONVERGENT_CONTINUED_FRACTION, 176 maxIterations, x); 177 } 178 179 return hN; 180 } 181 182 }