View Javadoc
1   /*
2    * Licensed to the Hipparchus project under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.hipparchus.special.elliptic.carlson;
18  
19  import org.hipparchus.util.FastMath;
20  import org.hipparchus.util.MathArrays;
21  
22  /** Duplication algorithm for Carlson R<sub>D</sub> elliptic integral.
23   * @since 2.0
24   */
25  class RdRealDuplication extends RealDuplication {
26  
27      /** Constant term in R<sub>J</sub> and R<sub>D</sub> polynomials. */
28      static final double CONSTANT = 4084080;
29  
30      /** Coefficient of E₂ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
31      static final double E2 = -875160;
32  
33      /** Coefficient of E₃ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
34      static final double E3 = 680680;
35  
36      /** Coefficient of E₂² in R<sub>J</sub> and R<sub>D</sub> polynomials. */
37      static final double E2_E2 = 417690;
38  
39      /** Coefficient of E₄ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
40      static final double E4 = -556920;
41  
42      /** Coefficient of E₂E₃ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
43      static final double E2_E3 = -706860;
44  
45      /** Coefficient of E₅ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
46      static final double E5 = 471240;
47  
48      /** Coefficient of E₂³ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
49      static final double E2_E2_E2 = -255255;
50  
51      /** Coefficient of E₃² in R<sub>J</sub> and R<sub>D</sub> polynomials. */
52      static final double E3_E3 = 306306;
53  
54      /** Coefficient of E₂E₄ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
55      static final double E2_E4 = 612612;
56  
57      /** Coefficient of E₂²E₃ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
58      static final double E2_E2_E3 = 675675;
59  
60      /** Coefficient of E₃E₄+E₂E₅ in R<sub>J</sub> and R<sub>D</sub> polynomials. */
61      static final double E3_E4_P_E2_E5 = -540540;
62  
63      /** Denominator in R<sub>J</sub> and R<sub>D</sub> polynomials. */
64      static final double DENOMINATOR = 4084080;
65  
66      /** Partial sum. */
67      private double sum;
68  
69      /** Simple constructor.
70       * @param x first symmetric variable of the integral
71       * @param y second symmetric variable of the integral
72       * @param z third symmetric variable of the integral
73       */
74      RdRealDuplication(final double x, final double y, final double z) {
75          super(x, y, z);
76          sum = 0;
77      }
78  
79      /** {@inheritDoc} */
80      @Override
81      protected void initialMeanPoint(final double[] va) {
82          va[3] = (va[0] + va[1] + va[2] * 3.0) / 5.0;
83      }
84  
85      /** {@inheritDoc} */
86      @Override
87      protected double convergenceCriterion(final double r, final double max) {
88          return max / (FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r * 0.25))));
89      }
90  
91      /** {@inheritDoc} */
92      @Override
93      protected void update(final int m, final double[] vaM, final double[] sqrtM, final  double fourM) {
94  
95          // equation 2.29 in Carlson[1995]
96          final double lambdaA = sqrtM[0] * sqrtM[1];
97          final double lambdaB = sqrtM[0] * sqrtM[2];
98          final double lambdaC = sqrtM[1] * sqrtM[2];
99  
100         // running sum in equation 2.34 in Carlson[1995]
101         final double lambda = lambdaA + lambdaB + lambdaC;
102         sum += 1.0 / ((vaM[2] + lambda) * sqrtM[2] * fourM);
103 
104         // equations 2.29 and 2.30 in Carlson[1995]
105         vaM[0] = MathArrays.linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // xₘ
106         vaM[1] = MathArrays.linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // yₘ
107         vaM[2] = MathArrays.linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // zₘ
108         vaM[3] = MathArrays.linearCombination(0.25, vaM[3], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // aₘ
109 
110     }
111 
112     /** {@inheritDoc} */
113     @Override
114     protected double evaluate(final double[] va0, final double aM, final  double fourM) {
115 
116         // compute symmetric differences
117         final double inv   = 1.0 / (aM * fourM);
118         final double bigX  = (va0[3] - va0[0]) * inv;
119         final double bigY  = (va0[3] - va0[1]) * inv;
120         final double bigZ  = (bigX + bigY) / -3;
121         final double bigXY = bigX * bigY;
122         final double bigZ2 = bigZ * bigZ;
123 
124         // compute elementary symmetric functions (we already know e1 = 0 by construction)
125         final double e2  = bigXY - bigZ2 * 6;
126         final double e3  = (bigXY * 3 - bigZ2 * 8) * bigZ;
127         final double e4  = (bigXY - bigZ2) * 3 * bigZ2;
128         final double e5  = bigXY * bigZ2 * bigZ;
129 
130         final double e2e2   =   e2 * e2;
131         final double e2e3   =   e2 * e3;
132         final double e2e4   =   e2 * e4;
133         final double e2e5   =   e2 * e5;
134         final double e3e3   =   e3 * e3;
135         final double e3e4   =   e3 * e4;
136         final double e2e2e2 = e2e2 * e2;
137         final double e2e2e3 = e2e2 * e3;
138 
139         // evaluate integral using equation 19.36.1 in DLMF
140         // (which add more terms than equation 2.7 in Carlson[1995])
141         final double poly = ((e3e4 + e2e5) * E3_E4_P_E2_E5 +
142                               e2e2e3 * E2_E2_E3 +
143                               e2e4 * E2_E4 +
144                               e3e3 * E3_E3 +
145                               e2e2e2 * E2_E2_E2 +
146                               e5 * E5 +
147                               e2e3 * E2_E3 +
148                               e4 * E4 +
149                               e2e2 * E2_E2 +
150                               e3 * E3 +
151                               e2 * E2 +
152                               CONSTANT) /
153                              DENOMINATOR;
154         final double polyTerm = poly / (aM * FastMath.sqrt(aM) * fourM);
155 
156         return polyTerm + sum * 3;
157 
158     }
159 
160 }