1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.random; 23 24 /** This class implements the WELL44497b pseudo-random number generator 25 * from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 26 * <p> 27 * This generator is described in a paper by François Panneton, 28 * Pierre L'Ecuyer and Makoto Matsumoto <a 29 * href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf">Improved 30 * Long-Period Generators Based on Linear Recurrences Modulo 2</a> ACM 31 * Transactions on Mathematical Software, 32, 1 (2006). The errata for the paper 32 * are in <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng-errata.txt"> 33 * wellrng-errata.txt</a>. 34 * 35 * @see <a href="http://www.iro.umontreal.ca/~panneton/WELLRNG.html">WELL Random number generator</a> 36 */ 37 public class Well44497b extends AbstractWell { 38 39 /** Serializable version identifier. */ 40 private static final long serialVersionUID = 20150223L; 41 42 /** Number of bits in the pool. */ 43 private static final int K = 44497; 44 45 /** First parameter of the algorithm. */ 46 private static final int M1 = 23; 47 48 /** Second parameter of the algorithm. */ 49 private static final int M2 = 481; 50 51 /** Third parameter of the algorithm. */ 52 private static final int M3 = 229; 53 54 /** The indirection index table. */ 55 private static final IndexTable TABLE = new IndexTable(K, M1, M2, M3); 56 57 /** 58 * Creates a new random number generator. 59 * <p> 60 * The instance is initialized using the current time as the seed. 61 */ 62 public Well44497b() { 63 super(K); 64 } 65 66 /** 67 * Creates a new random number generator using a single int seed. 68 * @param seed the initial seed (32 bits integer) 69 */ 70 public Well44497b(int seed) { 71 super(K, seed); 72 } 73 74 /** 75 * Creates a new random number generator using an int array seed. 76 * @param seed the initial seed (32 bits integers array), if null 77 * the seed of the generator will be related to the current time 78 */ 79 public Well44497b(int[] seed) { 80 super(K, seed); 81 } 82 83 /** 84 * Creates a new random number generator using a single long seed. 85 * @param seed the initial seed (64 bits integer) 86 */ 87 public Well44497b(long seed) { 88 super(K, seed); 89 } 90 91 /** {@inheritDoc} */ 92 @Override 93 public int nextInt() { 94 95 // compute raw value given by WELL44497a generator 96 // which is NOT maximally-equidistributed 97 final int indexRm1 = TABLE.getIndexPred(index); 98 final int indexRm2 = TABLE.getIndexPred2(index); 99 100 final int v0 = v[index]; 101 final int vM1 = v[TABLE.getIndexM1(index)]; 102 final int vM2 = v[TABLE.getIndexM2(index)]; 103 final int vM3 = v[TABLE.getIndexM3(index)]; 104 105 // the values below include the errata of the original article 106 final int z0 = (0xFFFF8000 & v[indexRm1]) ^ (0x00007FFF & v[indexRm2]); 107 final int z1 = (v0 ^ (v0 << 24)) ^ (vM1 ^ (vM1 >>> 30)); 108 final int z2 = (vM2 ^ (vM2 << 10)) ^ (vM3 << 26); 109 final int z3 = z1 ^ z2; 110 final int z2Prime = ((z2 << 9) ^ (z2 >>> 23)) & 0xfbffffff; 111 final int z2Second = ((z2 & 0x00020000) != 0) ? (z2Prime ^ 0xb729fcec) : z2Prime; 112 int z4 = z0 ^ (z1 ^ (z1 >>> 20)) ^ z2Second ^ z3; 113 114 v[index] = z3; 115 v[indexRm1] = z4; 116 v[indexRm2] &= 0xFFFF8000; 117 index = indexRm1; 118 119 // add Matsumoto-Kurita tempering 120 // to get a maximally-equidistributed generator 121 z4 ^= (z4 << 7) & 0x93dd1400; 122 z4 ^= (z4 << 15) & 0xfa118000; 123 124 return z4; 125 } 126 127 }