1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.random;
23
24 import org.hipparchus.exception.LocalizedCoreFormats;
25 import org.hipparchus.exception.MathIllegalArgumentException;
26 import org.hipparchus.exception.NullArgumentException;
27 import org.hipparchus.util.MathUtils;
28
29 /**
30 * Implementation of a Halton sequence.
31 * <p>
32 * A Halton sequence is a low-discrepancy sequence generating points in the interval [0, 1] according to
33 * <pre>
34 * H(n) = d_0 / b + d_1 / b^2 .... d_j / b^j+1
35 *
36 * with
37 *
38 * n = d_j * b^j-1 + ... d_1 * b + d_0 * b^0
39 * </pre>
40 * For higher dimensions, subsequent prime numbers are used as base, e.g. { 2, 3, 5 } for a Halton sequence in R^3.
41 * <p>
42 * Halton sequences are known to suffer from linear correlation for larger prime numbers, thus the individual digits
43 * are usually scrambled. This implementation already comes with support for up to 40 dimensions with optimal weight
44 * numbers from <a href="http://etd.lib.fsu.edu/theses/available/etd-07062004-140409/unrestricted/dissertation1.pdf">
45 * H. Chi: Scrambled quasirandom sequences and their applications</a>.
46 * <p>
47 * The generator supports two modes:
48 * <ul>
49 * <li>sequential generation of points: {@link #nextVector()}</li>
50 * <li>random access to the i-th point in the sequence: {@link #skipTo(int)}</li>
51 * </ul>
52 *
53 * @see <a href="http://en.wikipedia.org/wiki/Halton_sequence">Halton sequence (Wikipedia)</a>
54 * @see <a href="https://lirias.kuleuven.be/bitstream/123456789/131168/1/mcm2005_bartv.pdf">
55 * On the Halton sequence and its scramblings</a>
56 */
57 public class HaltonSequenceGenerator implements RandomVectorGenerator {
58
59 /** The first 40 primes. */
60 private static final int[] PRIMES = {
61 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
62 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
63 149, 151, 157, 163, 167, 173
64 };
65
66 /** The optimal weights used for scrambling of the first 40 dimension. */
67 private static final int[] WEIGHTS = {
68 1, 2, 3, 3, 8, 11, 12, 14, 7, 18, 12, 13, 17, 18, 29, 14, 18, 43, 41,
69 44, 40, 30, 47, 65, 71, 28, 40, 60, 79, 89, 56, 50, 52, 61, 108, 56,
70 66, 63, 60, 66
71 };
72
73 /** Space dimension. */
74 private final int dimension;
75
76 /** The current index in the sequence. */
77 private int count;
78
79 /** The base numbers for each component. */
80 private final int[] base;
81
82 /** The scrambling weights for each component. */
83 private final int[] weight;
84
85 /**
86 * Construct a new Halton sequence generator for the given space dimension.
87 *
88 * @param dimension the space dimension
89 * @throws MathIllegalArgumentException if the space dimension is outside the allowed range of [1, 40]
90 */
91 public HaltonSequenceGenerator(final int dimension) throws MathIllegalArgumentException {
92 this(dimension, PRIMES, WEIGHTS);
93 }
94
95 /**
96 * Construct a new Halton sequence generator with the given base numbers and weights for each dimension.
97 * The length of the bases array defines the space dimension and is required to be > 0.
98 *
99 * @param dimension the space dimension
100 * @param bases the base number for each dimension, entries should be (pairwise) prime, may not be null
101 * @param weights the weights used during scrambling, may be null in which case no scrambling will be performed
102 * @throws NullArgumentException if base is null
103 * @throws MathIllegalArgumentException if the space dimension is outside the range [1, len], where
104 * len refers to the length of the bases array
105 * @throws MathIllegalArgumentException if weights is non-null and the length of the input arrays differ
106 */
107 public HaltonSequenceGenerator(final int dimension, final int[] bases, final int[] weights)
108 throws MathIllegalArgumentException, NullArgumentException {
109
110 MathUtils.checkNotNull(bases);
111 MathUtils.checkRangeInclusive(dimension, 1, bases.length);
112
113 if (weights != null && weights.length != bases.length) {
114 throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
115 weights.length, bases.length);
116 }
117
118 this.dimension = dimension;
119 this.base = bases.clone();
120 this.weight = weights == null ? null : weights.clone();
121 count = 0;
122 }
123
124 /** {@inheritDoc} */
125 @Override
126 public double[] nextVector() {
127 final double[] v = new double[dimension];
128 for (int i = 0; i < dimension; i++) {
129 int index = count;
130 double f = 1.0 / base[i];
131
132 int j = 0;
133 while (index > 0) {
134 final int digit = scramble(i, j, base[i], index % base[i]);
135 v[i] += f * digit;
136 index /= base[i]; // floor( index / base )
137 f /= base[i];
138 }
139 }
140 count++;
141 return v;
142 }
143
144 /**
145 * Performs scrambling of digit {@code d_j} according to the formula:
146 * <pre>
147 * ( weight_i * d_j ) mod base
148 * </pre>
149 * Implementations can override this method to do a different scrambling.
150 *
151 * @param i the dimension index
152 * @param j the digit index
153 * @param b the base for this dimension
154 * @param digit the j-th digit
155 * @return the scrambled digit
156 */
157 protected int scramble(final int i, final int j, final int b, final int digit) {
158 return weight != null ? (weight[i] * digit) % b : digit;
159 }
160
161 /**
162 * Skip to the i-th point in the Halton sequence.
163 * <p>
164 * This operation can be performed in O(1).
165 *
166 * @param index the index in the sequence to skip to
167 * @return the i-th point in the Halton sequence
168 * @throws MathIllegalArgumentException if index < 0
169 */
170 public double[] skipTo(final int index) throws MathIllegalArgumentException {
171 count = index;
172 return nextVector();
173 }
174
175 /**
176 * Returns the index i of the next point in the Halton sequence that will be returned
177 * by calling {@link #nextVector()}.
178 *
179 * @return the index of the next point
180 */
181 public int getNextIndex() {
182 return count;
183 }
184
185 }