1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.linear;
23
24 import org.hipparchus.exception.LocalizedCoreFormats;
25 import org.hipparchus.exception.MathIllegalArgumentException;
26 import org.hipparchus.util.FastMath;
27 import org.hipparchus.util.Precision;
28
29 /**
30 * Calculates the compact Singular Value Decomposition of a matrix.
31 * <p>
32 * The Singular Value Decomposition of matrix A is a set of three matrices: U,
33 * Σ and V such that A = U × Σ × V<sup>T</sup>. Let A be
34 * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a
35 * p × p diagonal matrix with positive or null elements, V is a p ×
36 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where
37 * p=min(m,n).
38 * </p>
39 * <p>This class is similar to the class with similar name from the
40 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
41 * following changes:</p>
42 * <ul>
43 * <li>the {@code norm2} method which has been renamed as {@link #getNorm()
44 * getNorm},</li>
45 * <li>the {@code cond} method which has been renamed as {@link
46 * #getConditionNumber() getConditionNumber},</li>
47 * <li>the {@code rank} method which has been renamed as {@link #getRank()
48 * getRank},</li>
49 * <li>a {@link #getUT() getUT} method has been added,</li>
50 * <li>a {@link #getVT() getVT} method has been added,</li>
51 * <li>a {@link #getSolver() getSolver} method has been added,</li>
52 * <li>a {@link #getCovariance(double) getCovariance} method has been added.</li>
53 * </ul>
54 * @see <a href="http://mathworld.wolfram.com/SingularValueDecomposition.html">MathWorld</a>
55 * @see <a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Wikipedia</a>
56 */
57 public class SingularValueDecomposition {
58 /** Relative threshold for small singular values. */
59 private static final double EPS = 0x1.0p-52;
60 /** Absolute threshold for small singular values. */
61 private static final double TINY = 0x1.0p-966;
62 /** Computed singular values. */
63 private final double[] singularValues;
64 /** max(row dimension, column dimension). */
65 private final int m;
66 /** min(row dimension, column dimension). */
67 private final int n;
68 /** Cached value of U matrix. */
69 private final RealMatrix cachedU;
70 /** Cached value of transposed U matrix. */
71 private RealMatrix cachedUt;
72 /** Cached value of S (diagonal) matrix. */
73 private RealMatrix cachedS;
74 /** Cached value of V matrix. */
75 private final RealMatrix cachedV;
76 /** Cached value of transposed V matrix. */
77 private RealMatrix cachedVt;
78 /**
79 * Tolerance value for small singular values, calculated once we have
80 * populated "singularValues".
81 **/
82 private final double tol;
83
84 /**
85 * Calculates the compact Singular Value Decomposition of the given matrix.
86 *
87 * @param matrix Matrix to decompose.
88 */
89 public SingularValueDecomposition(final RealMatrix matrix) {
90 final double[][] A;
91
92 // "m" is always the largest dimension.
93 final boolean transposed;
94 if (matrix.getRowDimension() < matrix.getColumnDimension()) {
95 transposed = true;
96 A = matrix.transpose().getData();
97 m = matrix.getColumnDimension();
98 n = matrix.getRowDimension();
99 } else {
100 transposed = false;
101 A = matrix.getData();
102 m = matrix.getRowDimension();
103 n = matrix.getColumnDimension();
104 }
105
106 singularValues = new double[n];
107 final double[][] U = new double[m][n];
108 final double[][] V = new double[n][n];
109 final double[] e = new double[n];
110 final double[] work = new double[m];
111 // Reduce A to bidiagonal form, storing the diagonal elements
112 // in s and the super-diagonal elements in e.
113 final int nct = FastMath.min(m - 1, n);
114 final int nrt = FastMath.max(0, n - 2);
115 for (int k = 0; k < FastMath.max(nct, nrt); k++) {
116 if (k < nct) {
117 // Compute the transformation for the k-th column and
118 // place the k-th diagonal in s[k].
119 // Compute 2-norm of k-th column without under/overflow.
120 singularValues[k] = 0;
121 for (int i = k; i < m; i++) {
122 singularValues[k] = FastMath.hypot(singularValues[k], A[i][k]);
123 }
124 if (singularValues[k] != 0) {
125 if (A[k][k] < 0) {
126 singularValues[k] = -singularValues[k];
127 }
128 for (int i = k; i < m; i++) {
129 A[i][k] /= singularValues[k];
130 }
131 A[k][k] += 1;
132 }
133 singularValues[k] = -singularValues[k];
134 }
135 for (int j = k + 1; j < n; j++) {
136 if (k < nct &&
137 singularValues[k] != 0) {
138 // Apply the transformation.
139 double t = 0;
140 for (int i = k; i < m; i++) {
141 t += A[i][k] * A[i][j];
142 }
143 t = -t / A[k][k];
144 for (int i = k; i < m; i++) {
145 A[i][j] += t * A[i][k];
146 }
147 }
148 // Place the k-th row of A into e for the
149 // subsequent calculation of the row transformation.
150 e[j] = A[k][j];
151 }
152 if (k < nct) {
153 // Place the transformation in U for subsequent back
154 // multiplication.
155 for (int i = k; i < m; i++) {
156 U[i][k] = A[i][k];
157 }
158 }
159 if (k < nrt) {
160 // Compute the k-th row transformation and place the
161 // k-th super-diagonal in e[k].
162 // Compute 2-norm without under/overflow.
163 e[k] = 0;
164 for (int i = k + 1; i < n; i++) {
165 e[k] = FastMath.hypot(e[k], e[i]);
166 }
167 if (e[k] != 0) {
168 if (e[k + 1] < 0) {
169 e[k] = -e[k];
170 }
171 for (int i = k + 1; i < n; i++) {
172 e[i] /= e[k];
173 }
174 e[k + 1] += 1;
175 }
176 e[k] = -e[k];
177 if (k + 1 < m &&
178 e[k] != 0) {
179 // Apply the transformation.
180 for (int i = k + 1; i < m; i++) {
181 work[i] = 0;
182 }
183 for (int j = k + 1; j < n; j++) {
184 for (int i = k + 1; i < m; i++) {
185 work[i] += e[j] * A[i][j];
186 }
187 }
188 for (int j = k + 1; j < n; j++) {
189 final double t = -e[j] / e[k + 1];
190 for (int i = k + 1; i < m; i++) {
191 A[i][j] += t * work[i];
192 }
193 }
194 }
195
196 // Place the transformation in V for subsequent
197 // back multiplication.
198 for (int i = k + 1; i < n; i++) {
199 V[i][k] = e[i];
200 }
201 }
202 }
203 // Set up the final bidiagonal matrix or order p.
204 int p = n;
205 if (nct < n) {
206 singularValues[nct] = A[nct][nct];
207 }
208 if (m < p) {
209 singularValues[p - 1] = 0;
210 }
211 if (nrt + 1 < p) {
212 e[nrt] = A[nrt][p - 1];
213 }
214 e[p - 1] = 0;
215
216 // Generate U.
217 for (int j = nct; j < n; j++) {
218 for (int i = 0; i < m; i++) {
219 U[i][j] = 0;
220 }
221 U[j][j] = 1;
222 }
223 for (int k = nct - 1; k >= 0; k--) {
224 if (singularValues[k] != 0) {
225 for (int j = k + 1; j < n; j++) {
226 double t = 0;
227 for (int i = k; i < m; i++) {
228 t += U[i][k] * U[i][j];
229 }
230 t = -t / U[k][k];
231 for (int i = k; i < m; i++) {
232 U[i][j] += t * U[i][k];
233 }
234 }
235 for (int i = k; i < m; i++) {
236 U[i][k] = -U[i][k];
237 }
238 U[k][k] = 1 + U[k][k];
239 for (int i = 0; i < k - 1; i++) {
240 U[i][k] = 0;
241 }
242 } else {
243 for (int i = 0; i < m; i++) {
244 U[i][k] = 0;
245 }
246 U[k][k] = 1;
247 }
248 }
249
250 // Generate V.
251 for (int k = n - 1; k >= 0; k--) {
252 if (k < nrt &&
253 e[k] != 0) {
254 for (int j = k + 1; j < n; j++) {
255 double t = 0;
256 for (int i = k + 1; i < n; i++) {
257 t += V[i][k] * V[i][j];
258 }
259 t = -t / V[k + 1][k];
260 for (int i = k + 1; i < n; i++) {
261 V[i][j] += t * V[i][k];
262 }
263 }
264 }
265 for (int i = 0; i < n; i++) {
266 V[i][k] = 0;
267 }
268 V[k][k] = 1;
269 }
270
271 // Main iteration loop for the singular values.
272 final int pp = p - 1;
273 while (p > 0) {
274 int k;
275 int kase;
276 // Here is where a test for too many iterations would go.
277 // This section of the program inspects for
278 // negligible elements in the s and e arrays. On
279 // completion the variables kase and k are set as follows.
280 // kase = 1 if s(p) and e[k-1] are negligible and k<p
281 // kase = 2 if s(k) is negligible and k<p
282 // kase = 3 if e[k-1] is negligible, k<p, and
283 // s(k), ..., s(p) are not negligible (qr step).
284 // kase = 4 if e(p-1) is negligible (convergence).
285 for (k = p - 2; k >= 0; k--) {
286 final double threshold
287 = TINY + EPS * (FastMath.abs(singularValues[k]) +
288 FastMath.abs(singularValues[k + 1]));
289
290 // the following condition is written this way in order
291 // to break out of the loop when NaN occurs, writing it
292 // as "if (FastMath.abs(e[k]) <= threshold)" would loop
293 // indefinitely in case of NaNs because comparison on NaNs
294 // always return false, regardless of what is checked
295 // see issue MATH-947
296 if (!(FastMath.abs(e[k]) > threshold)) { // NOPMD - as explained above, the way this test is written is correct
297 e[k] = 0;
298 break;
299 }
300
301 }
302
303 if (k == p - 2) {
304 kase = 4;
305 } else {
306 int ks;
307 for (ks = p - 1; ks >= k; ks--) {
308 if (ks == k) {
309 break;
310 }
311 final double t = (ks != p ? FastMath.abs(e[ks]) : 0) +
312 (ks != k + 1 ? FastMath.abs(e[ks - 1]) : 0);
313 if (FastMath.abs(singularValues[ks]) <= TINY + EPS * t) {
314 singularValues[ks] = 0;
315 break;
316 }
317 }
318 if (ks == k) {
319 kase = 3;
320 } else if (ks == p - 1) {
321 kase = 1;
322 } else {
323 kase = 2;
324 k = ks;
325 }
326 }
327 k++;
328 // Perform the task indicated by kase.
329 switch (kase) { // NOPMD - breaking this complex algorithm into functions just to keep PMD happy would be artificial
330 // Deflate negligible s(p).
331 case 1: {
332 double f = e[p - 2];
333 e[p - 2] = 0;
334 for (int j = p - 2; j >= k; j--) {
335 double t = FastMath.hypot(singularValues[j], f);
336 final double cs = singularValues[j] / t;
337 final double sn = f / t;
338 singularValues[j] = t;
339 if (j != k) {
340 f = -sn * e[j - 1];
341 e[j - 1] = cs * e[j - 1];
342 }
343
344 for (int i = 0; i < n; i++) {
345 t = cs * V[i][j] + sn * V[i][p - 1];
346 V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
347 V[i][j] = t;
348 }
349 }
350 }
351 break;
352 // Split at negligible s(k).
353 case 2: {
354 double f = e[k - 1];
355 e[k - 1] = 0;
356 for (int j = k; j < p; j++) {
357 double t = FastMath.hypot(singularValues[j], f);
358 final double cs = singularValues[j] / t;
359 final double sn = f / t;
360 singularValues[j] = t;
361 f = -sn * e[j];
362 e[j] = cs * e[j];
363
364 for (int i = 0; i < m; i++) {
365 t = cs * U[i][j] + sn * U[i][k - 1];
366 U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
367 U[i][j] = t;
368 }
369 }
370 }
371 break;
372 // Perform one qr step.
373 case 3: {
374 // Calculate the shift.
375 final double maxPm1Pm2 = FastMath.max(FastMath.abs(singularValues[p - 1]),
376 FastMath.abs(singularValues[p - 2]));
377 final double scale = FastMath.max(FastMath.max(FastMath.max(maxPm1Pm2,
378 FastMath.abs(e[p - 2])),
379 FastMath.abs(singularValues[k])),
380 FastMath.abs(e[k]));
381 final double sp = singularValues[p - 1] / scale;
382 final double spm1 = singularValues[p - 2] / scale;
383 final double epm1 = e[p - 2] / scale;
384 final double sk = singularValues[k] / scale;
385 final double ek = e[k] / scale;
386 final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
387 final double c = (sp * epm1) * (sp * epm1);
388 double shift = 0;
389 if (b != 0 ||
390 c != 0) {
391 shift = FastMath.sqrt(b * b + c);
392 if (b < 0) {
393 shift = -shift;
394 }
395 shift = c / (b + shift);
396 }
397 double f = (sk + sp) * (sk - sp) + shift;
398 double g = sk * ek;
399 // Chase zeros.
400 for (int j = k; j < p - 1; j++) {
401 double t = FastMath.hypot(f, g);
402 double cs = f / t;
403 double sn = g / t;
404 if (j != k) {
405 e[j - 1] = t;
406 }
407 f = cs * singularValues[j] + sn * e[j];
408 e[j] = cs * e[j] - sn * singularValues[j];
409 g = sn * singularValues[j + 1];
410 singularValues[j + 1] = cs * singularValues[j + 1];
411
412 for (int i = 0; i < n; i++) {
413 t = cs * V[i][j] + sn * V[i][j + 1];
414 V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
415 V[i][j] = t;
416 }
417 t = FastMath.hypot(f, g);
418 cs = f / t;
419 sn = g / t;
420 singularValues[j] = t;
421 f = cs * e[j] + sn * singularValues[j + 1];
422 singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1];
423 g = sn * e[j + 1];
424 e[j + 1] = cs * e[j + 1];
425 if (j < m - 1) {
426 for (int i = 0; i < m; i++) {
427 t = cs * U[i][j] + sn * U[i][j + 1];
428 U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
429 U[i][j] = t;
430 }
431 }
432 }
433 e[p - 2] = f;
434 }
435 break;
436 // Convergence.
437 default: {
438 // Make the singular values positive.
439 if (singularValues[k] <= 0) {
440 singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0;
441
442 for (int i = 0; i <= pp; i++) {
443 V[i][k] = -V[i][k];
444 }
445 }
446 // Order the singular values.
447 while (k < pp) {
448 if (singularValues[k] >= singularValues[k + 1]) {
449 break;
450 }
451 double t = singularValues[k];
452 singularValues[k] = singularValues[k + 1];
453 singularValues[k + 1] = t;
454 if (k < n - 1) {
455 for (int i = 0; i < n; i++) {
456 t = V[i][k + 1];
457 V[i][k + 1] = V[i][k];
458 V[i][k] = t;
459 }
460 }
461 if (k < m - 1) {
462 for (int i = 0; i < m; i++) {
463 t = U[i][k + 1];
464 U[i][k + 1] = U[i][k];
465 U[i][k] = t;
466 }
467 }
468 k++;
469 }
470 p--;
471 }
472 break;
473 }
474 }
475
476 // Set the small value tolerance used to calculate rank and pseudo-inverse
477 tol = FastMath.max(m * singularValues[0] * EPS,
478 FastMath.sqrt(Precision.SAFE_MIN));
479
480 if (!transposed) {
481 cachedU = MatrixUtils.createRealMatrix(U);
482 cachedV = MatrixUtils.createRealMatrix(V);
483 } else {
484 cachedU = MatrixUtils.createRealMatrix(V);
485 cachedV = MatrixUtils.createRealMatrix(U);
486 }
487 }
488
489 /**
490 * Returns the matrix U of the decomposition.
491 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
492 * @return the U matrix
493 * @see #getUT()
494 */
495 public RealMatrix getU() {
496 // return the cached matrix
497 return cachedU;
498
499 }
500
501 /**
502 * Returns the transpose of the matrix U of the decomposition.
503 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
504 * @return the U matrix (or null if decomposed matrix is singular)
505 * @see #getU()
506 */
507 public RealMatrix getUT() {
508 if (cachedUt == null) {
509 cachedUt = getU().transpose();
510 }
511 // return the cached matrix
512 return cachedUt;
513 }
514
515 /**
516 * Returns the diagonal matrix Σ of the decomposition.
517 * <p>Σ is a diagonal matrix. The singular values are provided in
518 * non-increasing order, for compatibility with Jama.</p>
519 * @return the Σ matrix
520 */
521 public RealMatrix getS() {
522 if (cachedS == null) {
523 // cache the matrix for subsequent calls
524 cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues);
525 }
526 return cachedS;
527 }
528
529 /**
530 * Returns the diagonal elements of the matrix Σ of the decomposition.
531 * <p>The singular values are provided in non-increasing order, for
532 * compatibility with Jama.</p>
533 * @return the diagonal elements of the Σ matrix
534 */
535 public double[] getSingularValues() {
536 return singularValues.clone();
537 }
538
539 /**
540 * Returns the matrix V of the decomposition.
541 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
542 * @return the V matrix (or null if decomposed matrix is singular)
543 * @see #getVT()
544 */
545 public RealMatrix getV() {
546 // return the cached matrix
547 return cachedV;
548 }
549
550 /**
551 * Returns the transpose of the matrix V of the decomposition.
552 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
553 * @return the V matrix (or null if decomposed matrix is singular)
554 * @see #getV()
555 */
556 public RealMatrix getVT() {
557 if (cachedVt == null) {
558 cachedVt = getV().transpose();
559 }
560 // return the cached matrix
561 return cachedVt;
562 }
563
564 /**
565 * Returns the n × n covariance matrix.
566 * <p>The covariance matrix is V × J × V<sup>T</sup>
567 * where J is the diagonal matrix of the inverse of the squares of
568 * the singular values.</p>
569 * @param minSingularValue value below which singular values are ignored
570 * (a 0 or negative value implies all singular value will be used)
571 * @return covariance matrix
572 * @exception IllegalArgumentException if minSingularValue is larger than
573 * the largest singular value, meaning all singular values are ignored
574 */
575 public RealMatrix getCovariance(final double minSingularValue) {
576 // get the number of singular values to consider
577 final int p = singularValues.length;
578 int dimension = 0;
579 while (dimension < p &&
580 singularValues[dimension] >= minSingularValue) {
581 ++dimension;
582 }
583
584 if (dimension == 0) {
585 throw new MathIllegalArgumentException(LocalizedCoreFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE,
586 minSingularValue, singularValues[0], true);
587 }
588
589 final double[][] data = new double[dimension][p];
590 getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() {
591 /** {@inheritDoc} */
592 @Override
593 public void visit(final int row, final int column,
594 final double value) {
595 data[row][column] = value / singularValues[row];
596 }
597 }, 0, dimension - 1, 0, p - 1);
598
599 RealMatrix jv = new Array2DRowRealMatrix(data, false);
600 return jv.transposeMultiply(jv);
601 }
602
603 /**
604 * Returns the L<sub>2</sub> norm of the matrix.
605 * <p>The L<sub>2</sub> norm is max(|A × u|<sub>2</sub> /
606 * |u|<sub>2</sub>), where |.|<sub>2</sub> denotes the vectorial 2-norm
607 * (i.e. the traditional euclidian norm).</p>
608 * @return norm
609 */
610 public double getNorm() {
611 return singularValues[0];
612 }
613
614 /**
615 * Return the condition number of the matrix.
616 * @return condition number of the matrix
617 */
618 public double getConditionNumber() {
619 return singularValues[0] / singularValues[n - 1];
620 }
621
622 /**
623 * Computes the inverse of the condition number.
624 * In cases of rank deficiency, the {@link #getConditionNumber() condition
625 * number} will become undefined.
626 *
627 * @return the inverse of the condition number.
628 */
629 public double getInverseConditionNumber() {
630 return singularValues[n - 1] / singularValues[0];
631 }
632
633 /**
634 * Return the effective numerical matrix rank.
635 * <p>The effective numerical rank is the number of non-negligible
636 * singular values. The threshold used to identify non-negligible
637 * terms is max(m,n) × ulp(s<sub>1</sub>) where ulp(s<sub>1</sub>)
638 * is the least significant bit of the largest singular value.</p>
639 * @return effective numerical matrix rank
640 */
641 public int getRank() {
642 int r = 0;
643 for (double singularValue : singularValues) {
644 if (singularValue > tol) {
645 r++;
646 }
647 }
648 return r;
649 }
650
651 /**
652 * Get a solver for finding the A × X = B solution in least square sense.
653 * @return a solver
654 */
655 public DecompositionSolver getSolver() {
656 return new Solver(singularValues, getUT(), getV(), getRank() == m, tol);
657 }
658
659 /** Specialized solver. */
660 private static class Solver implements DecompositionSolver {
661 /** Pseudo-inverse of the initial matrix. */
662 private final RealMatrix pseudoInverse;
663 /** Singularity indicator. */
664 private final boolean nonSingular;
665
666 /**
667 * Build a solver from decomposed matrix.
668 *
669 * @param singularValues Singular values.
670 * @param uT U<sup>T</sup> matrix of the decomposition.
671 * @param v V matrix of the decomposition.
672 * @param nonSingular Singularity indicator.
673 * @param tol tolerance for singular values
674 */
675 private Solver(final double[] singularValues, final RealMatrix uT,
676 final RealMatrix v, final boolean nonSingular, final double tol) {
677 final double[][] suT = uT.getData();
678 for (int i = 0; i < singularValues.length; ++i) {
679 final double a;
680 if (singularValues[i] > tol) {
681 a = 1 / singularValues[i];
682 } else {
683 a = 0;
684 }
685 final double[] suTi = suT[i];
686 for (int j = 0; j < suTi.length; ++j) {
687 suTi[j] *= a;
688 }
689 }
690 pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false));
691 this.nonSingular = nonSingular;
692 }
693
694 /**
695 * Solve the linear equation A × X = B in least square sense.
696 * <p>
697 * The m×n matrix A may not be square, the solution X is such that
698 * ||A × X - B|| is minimal.
699 * </p>
700 * @param b Right-hand side of the equation A × X = B
701 * @return a vector X that minimizes the two norm of A × X - B
702 * @throws org.hipparchus.exception.MathIllegalArgumentException
703 * if the matrices dimensions do not match.
704 */
705 @Override
706 public RealVector solve(final RealVector b) {
707 return pseudoInverse.operate(b);
708 }
709
710 /**
711 * Solve the linear equation A × X = B in least square sense.
712 * <p>
713 * The m×n matrix A may not be square, the solution X is such that
714 * ||A × X - B|| is minimal.
715 * </p>
716 *
717 * @param b Right-hand side of the equation A × X = B
718 * @return a matrix X that minimizes the two norm of A × X - B
719 * @throws org.hipparchus.exception.MathIllegalArgumentException
720 * if the matrices dimensions do not match.
721 */
722 @Override
723 public RealMatrix solve(final RealMatrix b) {
724 return pseudoInverse.multiply(b);
725 }
726
727 /**
728 * Check if the decomposed matrix is non-singular.
729 *
730 * @return {@code true} if the decomposed matrix is non-singular.
731 */
732 @Override
733 public boolean isNonSingular() {
734 return nonSingular;
735 }
736
737 /**
738 * Get the pseudo-inverse of the decomposed matrix.
739 *
740 * @return the inverse matrix.
741 */
742 @Override
743 public RealMatrix getInverse() {
744 return pseudoInverse;
745 }
746
747 /** {@inheritDoc} */
748 @Override
749 public int getRowDimension() {
750 return pseudoInverse.getColumnDimension();
751 }
752
753 /** {@inheritDoc} */
754 @Override
755 public int getColumnDimension() {
756 return pseudoInverse.getRowDimension();
757 }
758
759 }
760 }