1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22
23 package org.hipparchus.linear;
24
25 import org.hipparchus.util.FastMath;
26
27
28 /**
29 * Calculates the rank-revealing QR-decomposition of a matrix, with column pivoting.
30 * <p>The rank-revealing QR-decomposition of a matrix A consists of three matrices Q,
31 * R and P such that AP=QR. Q is orthogonal (Q<sup>T</sup>Q = I), and R is upper triangular.
32 * If A is m×n, Q is m×m and R is m×n and P is n×n.</p>
33 * <p>QR decomposition with column pivoting produces a rank-revealing QR
34 * decomposition and the {@link #getRank(double)} method may be used to return the rank of the
35 * input matrix A.</p>
36 * <p>This class compute the decomposition using Householder reflectors.</p>
37 * <p>For efficiency purposes, the decomposition in packed form is transposed.
38 * This allows inner loop to iterate inside rows, which is much more cache-efficient
39 * in Java.</p>
40 * <p>This class is based on the class with similar name from the
41 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
42 * following changes:</p>
43 * <ul>
44 * <li>a {@link #getQT() getQT} method has been added,</li>
45 * <li>the {@code solve} and {@code isFullRank} methods have been replaced
46 * by a {@link #getSolver() getSolver} method and the equivalent methods
47 * provided by the returned {@link DecompositionSolver}.</li>
48 * </ul>
49 *
50 * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
51 * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
52 *
53 */
54 public class RRQRDecomposition extends QRDecomposition {
55
56 /** An array to record the column pivoting for later creation of P. */
57 private int[] p;
58
59 /** Cached value of P. */
60 private RealMatrix cachedP;
61
62
63 /**
64 * Calculates the QR-decomposition of the given matrix.
65 * The singularity threshold defaults to zero.
66 *
67 * @param matrix The matrix to decompose.
68 *
69 * @see #RRQRDecomposition(RealMatrix, double)
70 */
71 public RRQRDecomposition(RealMatrix matrix) {
72 this(matrix, 0d);
73 }
74
75 /**
76 * Calculates the QR-decomposition of the given matrix.
77 *
78 * @param matrix The matrix to decompose.
79 * @param threshold Singularity threshold.
80 * @see #RRQRDecomposition(RealMatrix)
81 */
82 public RRQRDecomposition(RealMatrix matrix, double threshold) {
83 super(matrix, threshold);
84 }
85
86 /** Decompose matrix.
87 * @param qrt transposed matrix
88 */
89 @Override
90 protected void decompose(double[][] qrt) {
91 p = new int[qrt.length];
92 for (int i = 0; i < p.length; i++) {
93 p[i] = i;
94 }
95 super.decompose(qrt);
96 }
97
98 /** Perform Householder reflection for a minor A(minor, minor) of A.
99 * @param minor minor index
100 * @param qrt transposed matrix
101 */
102 @Override
103 protected void performHouseholderReflection(int minor, double[][] qrt) {
104
105 double l2NormSquaredMax = 0;
106 // Find the unreduced column with the greatest L2-Norm
107 int l2NormSquaredMaxIndex = minor;
108 for (int i = minor; i < qrt.length; i++) {
109 double l2NormSquared = 0;
110 for (int j = 0; j < qrt[i].length; j++) {
111 l2NormSquared += qrt[i][j] * qrt[i][j];
112 }
113 if (l2NormSquared > l2NormSquaredMax) {
114 l2NormSquaredMax = l2NormSquared;
115 l2NormSquaredMaxIndex = i;
116 }
117 }
118 // swap the current column with that with the greated L2-Norm and record in p
119 if (l2NormSquaredMaxIndex != minor) {
120 double[] tmp1 = qrt[minor];
121 qrt[minor] = qrt[l2NormSquaredMaxIndex];
122 qrt[l2NormSquaredMaxIndex] = tmp1;
123 int tmp2 = p[minor];
124 p[minor] = p[l2NormSquaredMaxIndex];
125 p[l2NormSquaredMaxIndex] = tmp2;
126 }
127
128 super.performHouseholderReflection(minor, qrt);
129
130 }
131
132
133 /**
134 * Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR.
135 *
136 * If no pivoting is used in this decomposition then P is equal to the identity matrix.
137 *
138 * @return a permutation matrix.
139 */
140 public RealMatrix getP() {
141 if (cachedP == null) {
142 int n = p.length;
143 cachedP = MatrixUtils.createRealMatrix(n,n);
144 for (int i = 0; i < n; i++) {
145 cachedP.setEntry(p[i], i, 1);
146 }
147 }
148 return cachedP ;
149 }
150
151 /**
152 * Return the effective numerical matrix rank.
153 * <p>The effective numerical rank is the number of non-negligible
154 * singular values.</p>
155 * <p>This implementation looks at Frobenius norms of the sequence of
156 * bottom right submatrices. When a large fall in norm is seen,
157 * the rank is returned. The drop is computed as:</p>
158 * <pre>
159 * (thisNorm/lastNorm) * rNorm < dropThreshold
160 * </pre>
161 * <p>
162 * where thisNorm is the Frobenius norm of the current submatrix,
163 * lastNorm is the Frobenius norm of the previous submatrix,
164 * rNorm is is the Frobenius norm of the complete matrix
165 * </p>
166 *
167 * @param dropThreshold threshold triggering rank computation
168 * @return effective numerical matrix rank
169 */
170 public int getRank(final double dropThreshold) {
171 RealMatrix r = getR();
172 int rows = r.getRowDimension();
173 int columns = r.getColumnDimension();
174 int rank = 1;
175 double lastNorm = r.getFrobeniusNorm();
176 double rNorm = lastNorm;
177 while (rank < FastMath.min(rows, columns)) {
178 double thisNorm = r.getSubMatrix(rank, rows - 1, rank, columns - 1).getFrobeniusNorm();
179 if (thisNorm == 0 || (thisNorm / lastNorm) * rNorm < dropThreshold) {
180 break;
181 }
182 lastNorm = thisNorm;
183 rank++;
184 }
185 return rank;
186 }
187
188 /**
189 * Get a solver for finding the A × X = B solution in least square sense.
190 * <p>
191 * Least Square sense means a solver can be computed for an overdetermined system,
192 * (i.e. a system with more equations than unknowns, which corresponds to a tall A
193 * matrix with more rows than columns). In any case, if the matrix is singular
194 * within the tolerance set at {@link RRQRDecomposition#RRQRDecomposition(RealMatrix,
195 * double) construction}, an error will be triggered when
196 * the {@link DecompositionSolver#solve(RealVector) solve} method will be called.
197 * </p>
198 * @return a solver
199 */
200 @Override
201 public DecompositionSolver getSolver() {
202 return new Solver(super.getSolver(), this.getP());
203 }
204
205 /** Specialized solver. */
206 private static class Solver implements DecompositionSolver {
207
208 /** Upper level solver. */
209 private final DecompositionSolver upper;
210
211 /** A permutation matrix for the pivots used in the QR decomposition */
212 private RealMatrix p;
213
214 /**
215 * Build a solver from decomposed matrix.
216 *
217 * @param upper upper level solver.
218 * @param p permutation matrix
219 */
220 private Solver(final DecompositionSolver upper, final RealMatrix p) {
221 this.upper = upper;
222 this.p = p;
223 }
224
225 /** {@inheritDoc} */
226 @Override
227 public boolean isNonSingular() {
228 return upper.isNonSingular();
229 }
230
231 /** {@inheritDoc} */
232 @Override
233 public RealVector solve(RealVector b) {
234 return p.operate(upper.solve(b));
235 }
236
237 /** {@inheritDoc} */
238 @Override
239 public RealMatrix solve(RealMatrix b) {
240 return p.multiply(upper.solve(b));
241 }
242
243 /**
244 * {@inheritDoc}
245 * @throws org.hipparchus.exception.MathIllegalArgumentException
246 * if the decomposed matrix is singular.
247 */
248 @Override
249 public RealMatrix getInverse() {
250 return solve(MatrixUtils.createRealIdentityMatrix(p.getRowDimension()));
251 }
252 /** {@inheritDoc} */
253 @Override
254 public int getRowDimension() {
255 return upper.getRowDimension();
256 }
257
258 /** {@inheritDoc} */
259 @Override
260 public int getColumnDimension() {
261 return upper.getColumnDimension();
262 }
263
264 }
265 }