1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.linear;
23
24 import org.hipparchus.exception.LocalizedCoreFormats;
25 import org.hipparchus.exception.MathIllegalArgumentException;
26 import org.hipparchus.exception.MathIllegalStateException;
27 import org.hipparchus.exception.NullArgumentException;
28 import org.hipparchus.util.IterationManager;
29
30 /**
31 * <p>
32 * This is an implementation of the conjugate gradient method for
33 * {@link RealLinearOperator}. It follows closely the template by <a
34 * href="#BARR1994">Barrett et al. (1994)</a> (figure 2.5). The linear system at
35 * hand is A · x = b, and the residual is r = b - A · x.
36 * </p>
37 * <p><strong>Default stopping criterion</strong></p>
38 * <p>
39 * A default stopping criterion is implemented. The iterations stop when || r ||
40 * ≤ δ || b ||, where b is the right-hand side vector, r the current
41 * estimate of the residual, and δ a user-specified tolerance. It should
42 * be noted that r is the so-called <em>updated</em> residual, which might
43 * differ from the true residual due to rounding-off errors (see e.g. <a
44 * href="#STRA2002">Strakos and Tichy, 2002</a>).
45 * </p>
46 * <p><strong>Iteration count</strong></p>
47 * <p>
48 * In the present context, an iteration should be understood as one evaluation
49 * of the matrix-vector product A · x. The initialization phase therefore
50 * counts as one iteration.
51 * </p>
52 * <p><strong><a id="context">Exception context</a></strong></p>
53 * <p>
54 * Besides standard {@link MathIllegalArgumentException}, this class might throw
55 * {@link MathIllegalArgumentException} if the linear operator or
56 * the preconditioner are not positive definite.
57 * </p>
58 * <ul>
59 * <li>key {@code "operator"} points to the offending linear operator, say L,</li>
60 * <li>key {@code "vector"} points to the offending vector, say x, such that
61 * x<sup>T</sup> · L · x < 0.</li>
62 * </ul>
63 * <p><strong>References</strong></p>
64 * <dl>
65 * <dt>Barret et al. (1994)</dt>
66 * <dd>R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra,
67 * V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst,
68 * <a href="http://www.netlib.org/linalg/html_templates/Templates.html"><em>
69 * Templates for the Solution of Linear Systems: Building Blocks for Iterative
70 * Methods</em></a>, SIAM</dd>
71 * <dt>Strakos and Tichy (2002)</dt>
72 * <dd>Z. Strakos and P. Tichy, <a
73 * href="http://etna.mcs.kent.edu/vol.13.2002/pp56-80.dir/pp56-80.pdf">
74 * <em>On error estimation in the conjugate gradient method and why it works
75 * in finite precision computations</em></a>, Electronic Transactions on
76 * Numerical Analysis 13: 56-80, 2002</dd>
77 * </dl>
78 *
79 */
80 public class ConjugateGradient
81 extends PreconditionedIterativeLinearSolver {
82
83 /** Key for the <a href="#context">exception context</a>. */
84 public static final String OPERATOR = "operator";
85
86 /** Key for the <a href="#context">exception context</a>. */
87 public static final String VECTOR = "vector";
88
89 /**
90 * {@code true} if positive-definiteness of matrix and preconditioner should
91 * be checked.
92 */
93 private boolean check;
94
95 /** The value of δ, for the default stopping criterion. */
96 private final double delta;
97
98 /**
99 * Creates a new instance of this class, with <a href="#stopcrit">default
100 * stopping criterion</a>.
101 *
102 * @param maxIterations the maximum number of iterations
103 * @param delta the δ parameter for the default stopping criterion
104 * @param check {@code true} if positive definiteness of both matrix and
105 * preconditioner should be checked
106 */
107 public ConjugateGradient(final int maxIterations, final double delta,
108 final boolean check) {
109 super(maxIterations);
110 this.delta = delta;
111 this.check = check;
112 }
113
114 /**
115 * Creates a new instance of this class, with <a href="#stopcrit">default
116 * stopping criterion</a> and custom iteration manager.
117 *
118 * @param manager the custom iteration manager
119 * @param delta the δ parameter for the default stopping criterion
120 * @param check {@code true} if positive definiteness of both matrix and
121 * preconditioner should be checked
122 * @throws NullArgumentException if {@code manager} is {@code null}
123 */
124 public ConjugateGradient(final IterationManager manager,
125 final double delta, final boolean check)
126 throws NullArgumentException {
127 super(manager);
128 this.delta = delta;
129 this.check = check;
130 }
131
132 /**
133 * Returns {@code true} if positive-definiteness should be checked for both
134 * matrix and preconditioner.
135 *
136 * @return {@code true} if the tests are to be performed
137 * @since 1.4
138 */
139 public final boolean shouldCheck() {
140 return check;
141 }
142
143 /**
144 * {@inheritDoc}
145 *
146 * @throws MathIllegalArgumentException if {@code a} or {@code m} is
147 * not positive definite
148 */
149 @Override
150 public RealVector solveInPlace(final RealLinearOperator a,
151 final RealLinearOperator m,
152 final RealVector b,
153 final RealVector x0)
154 throws MathIllegalArgumentException, NullArgumentException,
155 MathIllegalStateException {
156 checkParameters(a, m, b, x0);
157 final IterationManager manager = getIterationManager();
158 // Initialization of default stopping criterion
159 manager.resetIterationCount();
160 final double rmax = delta * b.getNorm();
161 final RealVector bro = RealVector.unmodifiableRealVector(b);
162
163 // Initialization phase counts as one iteration.
164 manager.incrementIterationCount();
165 // p and x are constructed as copies of x0, since presumably, the type
166 // of x is optimized for the calculation of the matrix-vector product
167 // A.x.
168 final RealVector x = x0;
169 final RealVector xro = RealVector.unmodifiableRealVector(x);
170 final RealVector p = x.copy();
171 RealVector q = a.operate(p);
172
173 final RealVector r = b.combine(1, -1, q);
174 final RealVector rro = RealVector.unmodifiableRealVector(r);
175 double rnorm = r.getNorm();
176 RealVector z;
177 if (m == null) {
178 z = r;
179 } else {
180 z = null;
181 }
182 IterativeLinearSolverEvent evt;
183 evt = new DefaultIterativeLinearSolverEvent(this,
184 manager.getIterations(), xro, bro, rro, rnorm);
185 manager.fireInitializationEvent(evt);
186 if (rnorm <= rmax) {
187 manager.fireTerminationEvent(evt);
188 return x;
189 }
190 double rhoPrev = 0.;
191 while (true) {
192 manager.incrementIterationCount();
193 evt = new DefaultIterativeLinearSolverEvent(this,
194 manager.getIterations(), xro, bro, rro, rnorm);
195 manager.fireIterationStartedEvent(evt);
196 if (m != null) {
197 z = m.operate(r);
198 }
199 final double rhoNext = r.dotProduct(z);
200 if (check && (rhoNext <= 0.)) {
201 throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_POSITIVE_DEFINITE_OPERATOR);
202 }
203 if (manager.getIterations() == 2) {
204 p.setSubVector(0, z);
205 } else {
206 p.combineToSelf(rhoNext / rhoPrev, 1., z);
207 }
208 q = a.operate(p);
209 final double pq = p.dotProduct(q);
210 if (check && (pq <= 0.)) {
211 throw new MathIllegalArgumentException(LocalizedCoreFormats.NON_POSITIVE_DEFINITE_OPERATOR);
212 }
213 final double alpha = rhoNext / pq;
214 x.combineToSelf(1., alpha, p);
215 r.combineToSelf(1., -alpha, q);
216 rhoPrev = rhoNext;
217 rnorm = r.getNorm();
218 evt = new DefaultIterativeLinearSolverEvent(this,
219 manager.getIterations(), xro, bro, rro, rnorm);
220 manager.fireIterationPerformedEvent(evt);
221 if (rnorm <= rmax) {
222 manager.fireTerminationEvent(evt);
223 return x;
224 }
225 }
226 }
227 }