1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22
23 package org.hipparchus.distribution.continuous;
24
25 import org.hipparchus.exception.LocalizedCoreFormats;
26 import org.hipparchus.exception.MathIllegalArgumentException;
27 import org.hipparchus.special.Erf;
28 import org.hipparchus.util.FastMath;
29 import org.hipparchus.util.MathUtils;
30
31 /**
32 * Implementation of the normal (gaussian) distribution.
33 *
34 * @see <a href="http://en.wikipedia.org/wiki/Normal_distribution">Normal distribution (Wikipedia)</a>
35 * @see <a href="http://mathworld.wolfram.com/NormalDistribution.html">Normal distribution (MathWorld)</a>
36 */
37 public class NormalDistribution extends AbstractRealDistribution {
38 /** Serializable version identifier. */
39 private static final long serialVersionUID = 20160320L;
40 /** √(2) */
41 private static final double SQRT2 = FastMath.sqrt(2.0);
42 /** Mean of this distribution. */
43 private final double mean;
44 /** Standard deviation of this distribution. */
45 private final double standardDeviation;
46 /** The value of {@code log(sd) + 0.5*log(2*pi)} stored for faster computation. */
47 private final double logStandardDeviationPlusHalfLog2Pi;
48
49 /**
50 * Create a normal distribution with mean equal to zero and standard
51 * deviation equal to one.
52 */
53 public NormalDistribution() {
54 this(0, 1);
55 }
56
57 /**
58 * Create a normal distribution using the given mean, standard deviation.
59 *
60 * @param mean Mean for this distribution.
61 * @param sd Standard deviation for this distribution.
62 * @throws MathIllegalArgumentException if {@code sd <= 0}.
63 */
64 public NormalDistribution(double mean, double sd)
65 throws MathIllegalArgumentException {
66 if (sd <= 0) {
67 throw new MathIllegalArgumentException(LocalizedCoreFormats.STANDARD_DEVIATION, sd);
68 }
69
70 this.mean = mean;
71 this.standardDeviation = sd;
72 this.logStandardDeviationPlusHalfLog2Pi =
73 FastMath.log(sd) + 0.5 * FastMath.log(2 * FastMath.PI);
74 }
75
76 /**
77 * Access the mean.
78 *
79 * @return the mean for this distribution.
80 */
81 public double getMean() {
82 return mean;
83 }
84
85 /**
86 * Access the standard deviation.
87 *
88 * @return the standard deviation for this distribution.
89 */
90 public double getStandardDeviation() {
91 return standardDeviation;
92 }
93
94 /** {@inheritDoc} */
95 @Override
96 public double density(double x) {
97 return FastMath.exp(logDensity(x));
98 }
99
100 /** {@inheritDoc} */
101 @Override
102 public double logDensity(double x) {
103 final double x0 = x - mean;
104 final double x1 = x0 / standardDeviation;
105 return -0.5 * x1 * x1 - logStandardDeviationPlusHalfLog2Pi;
106 }
107
108 /**
109 * {@inheritDoc}
110 *
111 * If {@code x} is more than 40 standard deviations from the mean, 0 or 1
112 * is returned, as in these cases the actual value is within
113 * {@code Double.MIN_VALUE} of 0 or 1.
114 */
115 @Override
116 public double cumulativeProbability(double x) {
117 final double dev = x - mean;
118 if (FastMath.abs(dev) > 40 * standardDeviation) {
119 return dev < 0 ? 0.0d : 1.0d;
120 }
121 return 0.5 * Erf.erfc(-dev / (standardDeviation * SQRT2));
122 }
123
124 /** {@inheritDoc} */
125 @Override
126 public double inverseCumulativeProbability(final double p) throws MathIllegalArgumentException {
127 MathUtils.checkRangeInclusive(p, 0, 1);
128 return mean + standardDeviation * SQRT2 * Erf.erfInv(2 * p - 1);
129 }
130
131 /** {@inheritDoc} */
132 @Override
133 public double probability(double x0,
134 double x1)
135 throws MathIllegalArgumentException {
136 if (x0 > x1) {
137 throw new MathIllegalArgumentException(LocalizedCoreFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
138 x0, x1, true);
139 }
140 final double denom = standardDeviation * SQRT2;
141 final double v0 = (x0 - mean) / denom;
142 final double v1 = (x1 - mean) / denom;
143 return 0.5 * Erf.erf(v0, v1);
144 }
145
146 /**
147 * {@inheritDoc}
148 *
149 * For mean parameter {@code mu}, the mean is {@code mu}.
150 */
151 @Override
152 public double getNumericalMean() {
153 return getMean();
154 }
155
156 /**
157 * {@inheritDoc}
158 *
159 * For standard deviation parameter {@code s}, the variance is {@code s^2}.
160 */
161 @Override
162 public double getNumericalVariance() {
163 final double s = getStandardDeviation();
164 return s * s;
165 }
166
167 /**
168 * {@inheritDoc}
169 *
170 * The lower bound of the support is always negative infinity
171 * no matter the parameters.
172 *
173 * @return lower bound of the support (always
174 * {@code Double.NEGATIVE_INFINITY})
175 */
176 @Override
177 public double getSupportLowerBound() {
178 return Double.NEGATIVE_INFINITY;
179 }
180
181 /**
182 * {@inheritDoc}
183 *
184 * The upper bound of the support is always positive infinity
185 * no matter the parameters.
186 *
187 * @return upper bound of the support (always
188 * {@code Double.POSITIVE_INFINITY})
189 */
190 @Override
191 public double getSupportUpperBound() {
192 return Double.POSITIVE_INFINITY;
193 }
194
195 /**
196 * {@inheritDoc}
197 *
198 * The support of this distribution is connected.
199 *
200 * @return {@code true}
201 */
202 @Override
203 public boolean isSupportConnected() {
204 return true;
205 }
206 }