1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 /* 19 * This is not the original file distributed by the Apache Software Foundation 20 * It has been modified by the Hipparchus project 21 */ 22 package org.hipparchus.analysis.polynomials; 23 24 import java.util.Arrays; 25 26 import org.hipparchus.CalculusFieldElement; 27 import org.hipparchus.analysis.FieldUnivariateFunction; 28 import org.hipparchus.analysis.differentiation.Derivative; 29 import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction; 30 import org.hipparchus.exception.LocalizedCoreFormats; 31 import org.hipparchus.exception.MathIllegalArgumentException; 32 import org.hipparchus.exception.NullArgumentException; 33 import org.hipparchus.util.MathArrays; 34 import org.hipparchus.util.MathUtils; 35 36 /** 37 * Represents a polynomial spline function. 38 * <p> 39 * A <strong>polynomial spline function</strong> consists of a set of 40 * <i>interpolating polynomials</i> and an ascending array of domain 41 * <i>knot points</i>, determining the intervals over which the spline function 42 * is defined by the constituent polynomials. The polynomials are assumed to 43 * have been computed to match the values of another function at the knot 44 * points. The value consistency constraints are not currently enforced by 45 * <code>PolynomialSplineFunction</code> itself, but are assumed to hold among 46 * the polynomials and knot points passed to the constructor.</p> 47 * <p> 48 * N.B.: The polynomials in the <code>polynomials</code> property must be 49 * centered on the knot points to compute the spline function values. 50 * See below.</p> 51 * <p> 52 * The domain of the polynomial spline function is 53 * <code>[smallest knot, largest knot]</code>. Attempts to evaluate the 54 * function at values outside of this range generate IllegalArgumentExceptions. 55 * </p> 56 * <p> 57 * The value of the polynomial spline function for an argument <code>x</code> 58 * is computed as follows: 59 * <ol> 60 * <li>The knot array is searched to find the segment to which <code>x</code> 61 * belongs. If <code>x</code> is less than the smallest knot point or greater 62 * than the largest one, an <code>IllegalArgumentException</code> 63 * is thrown.</li> 64 * <li> Let <code>j</code> be the index of the largest knot point that is less 65 * than or equal to <code>x</code>. The value returned is 66 * {@code polynomials[j](x - knot[j])}</li></ol> 67 * 68 */ 69 public class PolynomialSplineFunction implements UnivariateDifferentiableFunction, FieldUnivariateFunction { 70 /** 71 * Spline segment interval delimiters (knots). 72 * Size is n + 1 for n segments. 73 */ 74 private final double[] knots; 75 /** 76 * The polynomial functions that make up the spline. The first element 77 * determines the value of the spline over the first subinterval, the 78 * second over the second, etc. Spline function values are determined by 79 * evaluating these functions at {@code (x - knot[i])} where i is the 80 * knot segment to which x belongs. 81 */ 82 private final PolynomialFunction[] polynomials; 83 /** 84 * Number of spline segments. It is equal to the number of polynomials and 85 * to the number of partition points - 1. 86 */ 87 private final int n; 88 89 90 /** 91 * Construct a polynomial spline function with the given segment delimiters 92 * and interpolating polynomials. 93 * The constructor copies both arrays and assigns the copies to the knots 94 * and polynomials properties, respectively. 95 * 96 * @param knots Spline segment interval delimiters. 97 * @param polynomials Polynomial functions that make up the spline. 98 * @throws NullArgumentException if either of the input arrays is {@code null}. 99 * @throws MathIllegalArgumentException if knots has length less than 2. 100 * @throws MathIllegalArgumentException if {@code polynomials.length != knots.length - 1}. 101 * @throws MathIllegalArgumentException if the {@code knots} array is not strictly increasing. 102 * 103 */ 104 public PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials) 105 throws MathIllegalArgumentException, NullArgumentException { 106 if (knots == null || 107 polynomials == null) { 108 throw new NullArgumentException(); 109 } 110 if (knots.length < 2) { 111 throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION, 112 2, knots.length, false); 113 } 114 MathUtils.checkDimension(polynomials.length, knots.length - 1); 115 MathArrays.checkOrder(knots); 116 117 this.n = knots.length -1; 118 this.knots = new double[n + 1]; 119 System.arraycopy(knots, 0, this.knots, 0, n + 1); 120 this.polynomials = new PolynomialFunction[n]; 121 System.arraycopy(polynomials, 0, this.polynomials, 0, n); 122 } 123 124 /** 125 * Compute the value for the function. 126 * See {@link PolynomialSplineFunction} for details on the algorithm for 127 * computing the value of the function. 128 * 129 * @param v Point for which the function value should be computed. 130 * @return the value. 131 * @throws MathIllegalArgumentException if {@code v} is outside of the domain of the 132 * spline function (smaller than the smallest knot point or larger than the 133 * largest knot point). 134 */ 135 @Override 136 public double value(double v) { 137 MathUtils.checkRangeInclusive(v, knots[0], knots[n]); 138 int i = Arrays.binarySearch(knots, v); 139 if (i < 0) { 140 i = -i - 2; 141 } 142 // This will handle the case where v is the last knot value 143 // There are only n-1 polynomials, so if v is the last knot 144 // then we will use the last polynomial to calculate the value. 145 if ( i >= polynomials.length ) { 146 i--; 147 } 148 return polynomials[i].value(v - knots[i]); 149 } 150 151 /** 152 * Get the derivative of the polynomial spline function. 153 * 154 * @return the derivative function. 155 */ 156 public PolynomialSplineFunction polynomialSplineDerivative() { 157 PolynomialFunction[] derivativePolynomials = new PolynomialFunction[n]; 158 for (int i = 0; i < n; i++) { 159 derivativePolynomials[i] = polynomials[i].polynomialDerivative(); 160 } 161 return new PolynomialSplineFunction(knots, derivativePolynomials); 162 } 163 164 165 /** {@inheritDoc} 166 */ 167 @Override 168 public <T extends Derivative<T>> T value(final T t) { 169 final double t0 = t.getReal(); 170 MathUtils.checkRangeInclusive(t0, knots[0], knots[n]); 171 int i = Arrays.binarySearch(knots, t0); 172 if (i < 0) { 173 i = -i - 2; 174 } 175 // This will handle the case where t is the last knot value 176 // There are only n-1 polynomials, so if t is the last knot 177 // then we will use the last polynomial to calculate the value. 178 if ( i >= polynomials.length ) { 179 i--; 180 } 181 return polynomials[i].value(t.subtract(knots[i])); 182 } 183 184 /** 185 * {@inheritDoc} 186 */ 187 @Override 188 public <T extends CalculusFieldElement<T>> T value(final T t) { 189 final double t0 = t.getReal(); 190 MathUtils.checkRangeInclusive(t0, knots[0], knots[n]); 191 int i = Arrays.binarySearch(knots, t0); 192 if (i < 0) { 193 i = -i - 2; 194 } 195 // This will handle the case where t is the last knot value 196 // There are only n-1 polynomials, so if t is the last knot 197 // then we will use the last polynomial to calculate the value. 198 if ( i >= polynomials.length ) { 199 i--; 200 } 201 return polynomials[i].value(t.subtract(knots[i])); 202 } 203 204 /** 205 * Get the number of spline segments. 206 * It is also the number of polynomials and the number of knot points - 1. 207 * 208 * @return the number of spline segments. 209 */ 210 public int getN() { 211 return n; 212 } 213 214 /** 215 * Get a copy of the interpolating polynomials array. 216 * It returns a fresh copy of the array. Changes made to the copy will 217 * not affect the polynomials property. 218 * 219 * @return the interpolating polynomials. 220 */ 221 public PolynomialFunction[] getPolynomials() { 222 PolynomialFunction[] p = new PolynomialFunction[n]; 223 System.arraycopy(polynomials, 0, p, 0, n); 224 return p; 225 } 226 227 /** 228 * Get an array copy of the knot points. 229 * It returns a fresh copy of the array. Changes made to the copy 230 * will not affect the knots property. 231 * 232 * @return the knot points. 233 */ 234 public double[] getKnots() { 235 double[] out = new double[n + 1]; 236 System.arraycopy(knots, 0, out, 0, n + 1); 237 return out; 238 } 239 240 /** 241 * Indicates whether a point is within the interpolation range. 242 * 243 * @param x Point. 244 * @return {@code true} if {@code x} is a valid point. 245 */ 246 public boolean isValidPoint(double x) { 247 return x >= knots[0] && x <= knots[n]; 248 } 249 }