1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.analysis.polynomials;
23
24 import org.hipparchus.analysis.UnivariateFunction;
25 import org.hipparchus.exception.LocalizedCoreFormats;
26 import org.hipparchus.exception.MathIllegalArgumentException;
27 import org.hipparchus.util.FastMath;
28 import org.hipparchus.util.MathArrays;
29
30 /**
31 * Implements the representation of a real polynomial function in
32 * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
33 * Lagrange Form</a>. For reference, see <b>Introduction to Numerical
34 * Analysis</b>, ISBN 038795452X, chapter 2.
35 * <p>
36 * The approximated function should be smooth enough for Lagrange polynomial
37 * to work well. Otherwise, consider using splines instead.</p>
38 *
39 */
40 public class PolynomialFunctionLagrangeForm implements UnivariateFunction {
41 /**
42 * The coefficients of the polynomial, ordered by degree -- i.e.
43 * coefficients[0] is the constant term and coefficients[n] is the
44 * coefficient of x^n where n is the degree of the polynomial.
45 */
46 private double[] coefficients;
47 /**
48 * Interpolating points (abscissas).
49 */
50 private final double[] x;
51 /**
52 * Function values at interpolating points.
53 */
54 private final double[] y;
55 /**
56 * Whether the polynomial coefficients are available.
57 */
58 private boolean coefficientsComputed;
59
60 /**
61 * Construct a Lagrange polynomial with the given abscissas and function
62 * values. The order of interpolating points are not important.
63 * <p>
64 * The constructor makes copy of the input arrays and assigns them.</p>
65 *
66 * @param x interpolating points
67 * @param y function values at interpolating points
68 * @throws MathIllegalArgumentException if the array lengths are different.
69 * @throws MathIllegalArgumentException if the number of points is less than 2.
70 * @throws MathIllegalArgumentException
71 * if two abscissae have the same value.
72 */
73 public PolynomialFunctionLagrangeForm(double[] x, double[] y)
74 throws MathIllegalArgumentException {
75 this.x = new double[x.length];
76 this.y = new double[y.length];
77 System.arraycopy(x, 0, this.x, 0, x.length);
78 System.arraycopy(y, 0, this.y, 0, y.length);
79 coefficientsComputed = false;
80
81 if (!verifyInterpolationArray(x, y, false)) {
82 MathArrays.sortInPlace(this.x, this.y);
83 // Second check in case some abscissa is duplicated.
84 verifyInterpolationArray(this.x, this.y, true);
85 }
86 }
87
88 /**
89 * Calculate the function value at the given point.
90 *
91 * @param z Point at which the function value is to be computed.
92 * @return the function value.
93 * @throws MathIllegalArgumentException if {@code x} and {@code y} have
94 * different lengths.
95 * @throws org.hipparchus.exception.MathIllegalArgumentException
96 * if {@code x} is not sorted in strictly increasing order.
97 * @throws MathIllegalArgumentException if the size of {@code x} is less
98 * than 2.
99 */
100 @Override
101 public double value(double z) {
102 return evaluateInternal(x, y, z);
103 }
104
105 /**
106 * Returns the degree of the polynomial.
107 *
108 * @return the degree of the polynomial
109 */
110 public int degree() {
111 return x.length - 1;
112 }
113
114 /**
115 * Returns a copy of the interpolating points array.
116 * <p>
117 * Changes made to the returned copy will not affect the polynomial.</p>
118 *
119 * @return a fresh copy of the interpolating points array
120 */
121 public double[] getInterpolatingPoints() {
122 double[] out = new double[x.length];
123 System.arraycopy(x, 0, out, 0, x.length);
124 return out;
125 }
126
127 /**
128 * Returns a copy of the interpolating values array.
129 * <p>
130 * Changes made to the returned copy will not affect the polynomial.</p>
131 *
132 * @return a fresh copy of the interpolating values array
133 */
134 public double[] getInterpolatingValues() {
135 double[] out = new double[y.length];
136 System.arraycopy(y, 0, out, 0, y.length);
137 return out;
138 }
139
140 /**
141 * Returns a copy of the coefficients array.
142 * <p>
143 * Changes made to the returned copy will not affect the polynomial.</p>
144 * <p>
145 * Note that coefficients computation can be ill-conditioned. Use with caution
146 * and only when it is necessary.</p>
147 *
148 * @return a fresh copy of the coefficients array
149 */
150 public double[] getCoefficients() {
151 if (!coefficientsComputed) {
152 computeCoefficients();
153 }
154 double[] out = new double[coefficients.length];
155 System.arraycopy(coefficients, 0, out, 0, coefficients.length);
156 return out;
157 }
158
159 /**
160 * Evaluate the Lagrange polynomial using
161 * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
162 * Neville's Algorithm</a>. It takes O(n^2) time.
163 *
164 * @param x Interpolating points array.
165 * @param y Interpolating values array.
166 * @param z Point at which the function value is to be computed.
167 * @return the function value.
168 * @throws MathIllegalArgumentException if {@code x} and {@code y} have
169 * different lengths.
170 * @throws MathIllegalArgumentException
171 * if {@code x} is not sorted in strictly increasing order.
172 * @throws MathIllegalArgumentException if the size of {@code x} is less
173 * than 2.
174 */
175 public static double evaluate(double[] x, double[] y, double z)
176 throws MathIllegalArgumentException {
177 if (verifyInterpolationArray(x, y, false)) {
178 return evaluateInternal(x, y, z);
179 }
180
181 // Array is not sorted.
182 final double[] xNew = new double[x.length];
183 final double[] yNew = new double[y.length];
184 System.arraycopy(x, 0, xNew, 0, x.length);
185 System.arraycopy(y, 0, yNew, 0, y.length);
186
187 MathArrays.sortInPlace(xNew, yNew);
188 // Second check in case some abscissa is duplicated.
189 verifyInterpolationArray(xNew, yNew, true);
190 return evaluateInternal(xNew, yNew, z);
191 }
192
193 /**
194 * Evaluate the Lagrange polynomial using
195 * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
196 * Neville's Algorithm</a>. It takes O(n^2) time.
197 *
198 * @param x Interpolating points array.
199 * @param y Interpolating values array.
200 * @param z Point at which the function value is to be computed.
201 * @return the function value.
202 * @throws MathIllegalArgumentException if {@code x} and {@code y} have
203 * different lengths.
204 * @throws org.hipparchus.exception.MathIllegalArgumentException
205 * if {@code x} is not sorted in strictly increasing order.
206 * @throws MathIllegalArgumentException if the size of {@code x} is less
207 * than 2.
208 */
209 private static double evaluateInternal(double[] x, double[] y, double z) {
210 int nearest = 0;
211 final int n = x.length;
212 final double[] c = new double[n];
213 final double[] d = new double[n];
214 double minDist = Double.POSITIVE_INFINITY;
215 for (int i = 0; i < n; i++) {
216 // initialize the difference arrays
217 c[i] = y[i];
218 d[i] = y[i];
219 // find out the abscissa closest to z
220 final double dist = FastMath.abs(z - x[i]);
221 if (dist < minDist) {
222 nearest = i;
223 minDist = dist;
224 }
225 }
226
227 // initial approximation to the function value at z
228 double value = y[nearest];
229
230 for (int i = 1; i < n; i++) {
231 for (int j = 0; j < n-i; j++) {
232 final double tc = x[j] - z;
233 final double td = x[i+j] - z;
234 final double divider = x[j] - x[i+j];
235 // update the difference arrays
236 final double w = (c[j+1] - d[j]) / divider;
237 c[j] = tc * w;
238 d[j] = td * w;
239 }
240 // sum up the difference terms to get the final value
241 if (nearest < 0.5*(n-i+1)) {
242 value += c[nearest]; // fork down
243 } else {
244 nearest--;
245 value += d[nearest]; // fork up
246 }
247 }
248
249 return value;
250 }
251
252 /**
253 * Calculate the coefficients of Lagrange polynomial from the
254 * interpolation data. It takes O(n^2) time.
255 * Note that this computation can be ill-conditioned: Use with caution
256 * and only when it is necessary.
257 */
258 protected void computeCoefficients() {
259 final int n = degree() + 1;
260 coefficients = new double[n];
261 for (int i = 0; i < n; i++) {
262 coefficients[i] = 0.0;
263 }
264
265 // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
266 final double[] c = new double[n+1];
267 c[0] = 1.0;
268 for (int i = 0; i < n; i++) {
269 for (int j = i; j > 0; j--) {
270 c[j] = c[j-1] - c[j] * x[i];
271 }
272 c[0] *= -x[i];
273 c[i+1] = 1;
274 }
275
276 final double[] tc = new double[n];
277 for (int i = 0; i < n; i++) {
278 // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
279 double d = 1;
280 for (int j = 0; j < n; j++) {
281 if (i != j) {
282 d *= x[i] - x[j];
283 }
284 }
285 final double t = y[i] / d;
286 // Lagrange polynomial is the sum of n terms, each of which is a
287 // polynomial of degree n-1. tc[] are the coefficients of the i-th
288 // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
289 tc[n-1] = c[n]; // actually c[n] = 1
290 coefficients[n-1] += t * tc[n-1];
291 for (int j = n-2; j >= 0; j--) {
292 tc[j] = c[j+1] + tc[j+1] * x[i];
293 coefficients[j] += t * tc[j];
294 }
295 }
296
297 coefficientsComputed = true;
298 }
299
300 /**
301 * Check that the interpolation arrays are valid.
302 * The arrays features checked by this method are that both arrays have the
303 * same length and this length is at least 2.
304 *
305 * @param x Interpolating points array.
306 * @param y Interpolating values array.
307 * @param abort Whether to throw an exception if {@code x} is not sorted.
308 * @throws MathIllegalArgumentException if the array lengths are different.
309 * @throws MathIllegalArgumentException if the number of points is less than 2.
310 * @throws org.hipparchus.exception.MathIllegalArgumentException
311 * if {@code x} is not sorted in strictly increasing order and {@code abort}
312 * is {@code true}.
313 * @return {@code false} if the {@code x} is not sorted in increasing order,
314 * {@code true} otherwise.
315 * @see #evaluate(double[], double[], double)
316 * @see #computeCoefficients()
317 */
318 public static boolean verifyInterpolationArray(double[] x, double[] y, boolean abort)
319 throws MathIllegalArgumentException {
320 MathArrays.checkEqualLength(x, y);
321 if (x.length < 2) {
322 throw new MathIllegalArgumentException(LocalizedCoreFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true);
323 }
324
325 return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort);
326 }
327 }