1 /*
2 * Licensed to the Hipparchus project under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.hipparchus.analysis.interpolation;
18
19 import java.io.Serializable;
20 import java.util.concurrent.atomic.AtomicInteger;
21
22 import org.hipparchus.exception.LocalizedCoreFormats;
23 import org.hipparchus.exception.MathIllegalArgumentException;
24 import org.hipparchus.util.FastMath;
25 import org.hipparchus.util.MathArrays;
26
27 /**
28 * Helper for finding interpolation nodes along one axis of grid data.
29 * <p>
30 * This class is intended to be used for interpolating inside grids.
31 * It works on any sorted data without duplication and size at least
32 * {@code n} where {@code n} is the number of points required for
33 * interpolation (i.e. 2 for linear interpolation, 3 for quadratic...)
34 * </p>
35 * <p>
36 * The method uses linear interpolation to select the nodes indices.
37 * It should be O(1) for sufficiently regular data, therefore much faster
38 * than bisection. It also features caching, which improves speed when
39 * interpolating several points in row in the close locations, i.e. when
40 * successive calls have a high probability to return the same interpolation
41 * nodes. This occurs for example when scanning with small steps a loose
42 * grid. The method also works on non-regular grids, but may be slower in
43 * this case.
44 * </p>
45 * <p>
46 * This class is thread-safe.
47 * </p>
48 * @since 1.4
49 */
50 public class GridAxis implements Serializable {
51
52 /** Serializable UID. */
53 private static final long serialVersionUID = 20180926L;
54
55 /** All the coordinates of the interpolation points, sorted in increasing order. */
56 private final double[] grid;
57
58 /** Number of points required for interpolation. */
59 private final int n;
60
61 /** Cached value of last x index. */
62 private final AtomicInteger cache;
63
64 /** Simple constructor.
65 * @param grid coordinates of the interpolation points, sorted in increasing order
66 * @param n number of points required for interpolation, i.e. 2 for linear, 3
67 * for quadratic...
68 * @exception MathIllegalArgumentException if grid size is smaller than {@code n}
69 * or if the grid is not sorted in strict increasing order
70 */
71 public GridAxis(final double[] grid, final int n)
72 throws MathIllegalArgumentException {
73
74 // safety checks
75 if (grid.length < n) {
76 throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_DIMENSION,
77 grid.length, n);
78 }
79 MathArrays.checkOrder(grid);
80
81 this.grid = grid.clone();
82 this.n = n;
83 this.cache = new AtomicInteger(0);
84
85 }
86
87 /** Get the number of points of the grid.
88 * @return number of points of the grid
89 */
90 public int size() {
91 return grid.length;
92 }
93
94 /** Get the number of points required for interpolation.
95 * @return number of points required for interpolation
96 */
97 public int getN() {
98 return n;
99 }
100
101 /** Get the interpolation node at specified index.
102 * @param index node index
103 * @return coordinate of the node at specified index
104 */
105 public double node(final int index) {
106 return grid[index];
107 }
108
109 /** Get the index of the first interpolation node for some coordinate along the grid.
110 * <p>
111 * The index return is the one for the lowest interpolation node suitable for
112 * {@code t}. This means that if {@code i} is returned the nodes to use for
113 * interpolation at coordinate {@code t} are at indices {@code i}, {@code i+1},
114 * ..., {@code i+n-1}, where {@code n} is the number of points required for
115 * interpolation passed at construction.
116 * </p>
117 * <p>
118 * The index is selected in order to have the subset of nodes from {@code i} to
119 * {@code i+n-1} as balanced as possible around {@code t}:
120 * </p>
121 * <ul>
122 * <li>
123 * if {@code t} is inside the grid and sufficiently far from the endpoints
124 * <ul>
125 * <li>
126 * if {@code n} is even, the returned nodes will be perfectly balanced:
127 * there will be {@code n/2} nodes smaller than {@code t} and {@code n/2}
128 * nodes larger than {@code t}
129 * </li>
130 * <li>
131 * if {@code n} is odd, the returned nodes will be slightly unbalanced by
132 * one point: there will be {@code (n+1)/2} nodes smaller than {@code t}
133 * and {@code (n-1)/2} nodes larger than {@code t}
134 * </li>
135 * </ul>
136 * </li>
137 * <li>
138 * if {@code t} is inside the grid and close to endpoints, the returned nodes
139 * will be unbalanced: there will be less nodes on the endpoints side and
140 * more nodes on the interior side
141 * </li>
142 * <li>
143 * if {@code t} is outside of the grid, the returned nodes will completely
144 * off balance: all nodes will be on the same side with respect to {@code t}
145 * </li>
146 * </ul>
147 * <p>
148 * It is <em>not</em> an error to call this method with {@code t} outside of the grid,
149 * it simply implies that the interpolation will become an extrapolation and accuracy
150 * will decrease as {@code t} goes farther from the grid points. This is intended so
151 * interpolation does not fail near the end of the grid.
152 * </p>
153 * @param t coordinate of the point to interpolate
154 * @return index {@code i} such {@link #node(int) node(i)}, {@link #node(int) node(i+1)},
155 * ... {@link #node(int) node(i+n-1)} can be used for interpolating a value at
156 * coordinate {@code t}
157 * @since 1.4
158 */
159 public int interpolationIndex(final double t) {
160
161 final int middleOffset = (n - 1) / 2;
162 int iInf = middleOffset;
163 int iSup = grid.length - (n - 1) + middleOffset;
164
165 // first try to simply reuse the cached index,
166 // for faster return in a common case
167 final int cached = cache.get();
168 final int middle = cached + middleOffset;
169 final double aMid0 = grid[middle];
170 final double aMid1 = grid[middle + 1];
171 if (t < aMid0) {
172 if (middle == iInf) {
173 // we are in the unbalanced low area
174 return cached;
175 }
176 } else if (t < aMid1) {
177 // we are in the balanced middle area
178 return cached;
179 } else {
180 if (middle == iSup - 1) {
181 // we are in the unbalanced high area
182 return cached;
183 }
184 }
185
186 // we need to find a new index
187 double aInf = grid[iInf];
188 double aSup = grid[iSup];
189 while (iSup - iInf > 1) {
190 final int iInterp = (int) ((iInf * (aSup - t) + iSup * (t - aInf)) / (aSup - aInf));
191 final int iMed = FastMath.max(iInf + 1, FastMath.min(iInterp, iSup - 1));
192 if (t < grid[iMed]) {
193 // keeps looking in the lower part of the grid
194 iSup = iMed;
195 aSup = grid[iSup];
196 } else {
197 // keeps looking in the upper part of the grid
198 iInf = iMed;
199 aInf = grid[iInf];
200 }
201 }
202
203 final int newCached = iInf - middleOffset;
204 cache.compareAndSet(cached, newCached);
205 return newCached;
206
207 }
208
209 }