1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22 package org.hipparchus.analysis.integration;
23
24 import org.hipparchus.CalculusFieldElement;
25 import org.hipparchus.Field;
26 import org.hipparchus.analysis.integration.gauss.FieldGaussIntegrator;
27 import org.hipparchus.analysis.integration.gauss.FieldGaussIntegratorFactory;
28 import org.hipparchus.exception.LocalizedCoreFormats;
29 import org.hipparchus.exception.MathIllegalArgumentException;
30 import org.hipparchus.exception.MathIllegalStateException;
31 import org.hipparchus.util.FastMath;
32
33 /**
34 * This algorithm divides the integration interval into equally-sized
35 * sub-interval and on each of them performs a
36 * <a href="http://mathworld.wolfram.com/Legendre-GaussQuadrature.html">
37 * Legendre-Gauss</a> quadrature.
38 * Because of its <em>non-adaptive</em> nature, this algorithm can
39 * converge to a wrong value for the integral (for example, if the
40 * function is significantly different from zero toward the ends of the
41 * integration interval).
42 * In particular, a change of variables aimed at estimating integrals
43 * over infinite intervals as proposed
44 * <a href="http://en.wikipedia.org/w/index.php?title=Numerical_integration#Integrals_over_infinite_intervals">
45 * here</a> should be avoided when using this class.
46 *
47 * @param <T> Type of the field elements.
48 * @since 2.0
49 */
50 public class IterativeLegendreFieldGaussIntegrator<T extends CalculusFieldElement<T>>
51 extends BaseAbstractFieldUnivariateIntegrator<T> {
52
53 /** Factory that computes the points and weights. */
54 private final FieldGaussIntegratorFactory<T> factory;
55
56 /** Number of integration points (per interval). */
57 private final int numberOfPoints;
58
59 /**
60 * Builds an integrator with given accuracies and iterations counts.
61 *
62 * @param field field to which function argument and value belong
63 * @param n Number of integration points.
64 * @param relativeAccuracy Relative accuracy of the result.
65 * @param absoluteAccuracy Absolute accuracy of the result.
66 * @param minimalIterationCount Minimum number of iterations.
67 * @param maximalIterationCount Maximum number of iterations.
68 * @throws MathIllegalArgumentException if minimal number of iterations
69 * or number of points are not strictly positive.
70 * @throws MathIllegalArgumentException if maximal number of iterations
71 * is smaller than or equal to the minimal number of iterations.
72 */
73 public IterativeLegendreFieldGaussIntegrator(final Field<T> field, final int n,
74 final double relativeAccuracy,
75 final double absoluteAccuracy,
76 final int minimalIterationCount,
77 final int maximalIterationCount)
78 throws MathIllegalArgumentException {
79 super(field, relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
80 if (n <= 0) {
81 throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS, n);
82 }
83 factory = new FieldGaussIntegratorFactory<>(field);
84 numberOfPoints = n;
85 }
86
87 /**
88 * Builds an integrator with given accuracies.
89 *
90 * @param field field to which function argument and value belong
91 * @param n Number of integration points.
92 * @param relativeAccuracy Relative accuracy of the result.
93 * @param absoluteAccuracy Absolute accuracy of the result.
94 * @throws MathIllegalArgumentException if {@code n < 1}.
95 */
96 public IterativeLegendreFieldGaussIntegrator(final Field<T> field, final int n,
97 final double relativeAccuracy,
98 final double absoluteAccuracy)
99 throws MathIllegalArgumentException {
100 this(field, n, relativeAccuracy, absoluteAccuracy,
101 DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT);
102 }
103
104 /**
105 * Builds an integrator with given iteration counts.
106 *
107 * @param field field to which function argument and value belong
108 * @param n Number of integration points.
109 * @param minimalIterationCount Minimum number of iterations.
110 * @param maximalIterationCount Maximum number of iterations.
111 * @throws MathIllegalArgumentException if minimal number of iterations
112 * is not strictly positive.
113 * @throws MathIllegalArgumentException if maximal number of iterations
114 * is smaller than or equal to the minimal number of iterations.
115 * @throws MathIllegalArgumentException if {@code n < 1}.
116 */
117 public IterativeLegendreFieldGaussIntegrator(final Field<T> field, final int n,
118 final int minimalIterationCount,
119 final int maximalIterationCount)
120 throws MathIllegalArgumentException {
121 this(field, n, DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY,
122 minimalIterationCount, maximalIterationCount);
123 }
124
125 /** {@inheritDoc} */
126 @Override
127 protected T doIntegrate()
128 throws MathIllegalArgumentException, MathIllegalStateException {
129 // Compute first estimate with a single step.
130 T oldt = stage(1);
131
132 int n = 2;
133 while (true) {
134 // Improve integral with a larger number of steps.
135 final T t = stage(n);
136
137 // Estimate the error.
138 final double delta = FastMath.abs(t.subtract(oldt)).getReal();
139 final double limit =
140 FastMath.max(getAbsoluteAccuracy(),
141 FastMath.abs(oldt).add(FastMath.abs(t)).multiply(0.5 * getRelativeAccuracy()).getReal());
142
143 // check convergence
144 if (iterations.getCount() + 1 >= getMinimalIterationCount() &&
145 delta <= limit) {
146 return t;
147 }
148
149 // Prepare next iteration.
150 final double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / numberOfPoints));
151 n = FastMath.max((int) (ratio * n), n + 1);
152 oldt = t;
153 iterations.increment();
154 }
155 }
156
157 /**
158 * Compute the n-th stage integral.
159 *
160 * @param n Number of steps.
161 * @return the value of n-th stage integral.
162 * @throws MathIllegalStateException if the maximum number of evaluations
163 * is exceeded.
164 */
165 private T stage(final int n)
166 throws MathIllegalStateException {
167
168 final T min = getMin();
169 final T max = getMax();
170 final T step = max.subtract(min).divide(n);
171
172 T sum = getField().getZero();
173 for (int i = 0; i < n; i++) {
174 // Integrate over each sub-interval [a, b].
175 final T a = min.add(step.multiply(i));
176 final T b = a.add(step);
177 final FieldGaussIntegrator<T> g = factory.legendre(numberOfPoints, a, b);
178 sum = sum.add(g.integrate(super::computeObjectiveValue));
179 }
180
181 return sum;
182 }
183
184 }