1 /* 2 * Licensed to the Hipparchus project under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.hipparchus.analysis.differentiation; 18 19 import org.hipparchus.CalculusFieldElement; 20 import org.hipparchus.exception.MathIllegalArgumentException; 21 import org.hipparchus.util.FastMath; 22 23 /** Interface representing both the value and the differentials of a function. 24 * @param <T> the type of the field elements 25 * @since 1.7 26 */ 27 public interface Derivative<T extends CalculusFieldElement<T>> extends CalculusFieldElement<T>, DifferentialAlgebra { 28 29 /** {@inheritDoc} */ 30 @Override 31 default double getReal() { 32 return getValue(); 33 } 34 35 /** Get the value part of the function. 36 * @return value part of the value of the function 37 */ 38 double getValue(); 39 40 /** Create a new object with new value (zeroth-order derivative, as passed as input) 41 * and same derivatives of order one and above. 42 * <p> 43 * This default implementation is there so that no API gets broken 44 * by the next release, which is not a major one. Custom inheritors 45 * should probably overwrite it. 46 * </p> 47 * @param value zeroth-order derivative of new represented function 48 * @return new object with changed value 49 * @since 3.1 50 */ 51 default T withValue(double value) { 52 return add(newInstance(value - getValue())); 53 } 54 55 /** Get a partial derivative. 56 * @param orders derivation orders with respect to each variable (if all orders are 0, 57 * the value is returned) 58 * @return partial derivative 59 * @see #getValue() 60 * @exception MathIllegalArgumentException if the numbers of variables does not 61 * match the instance 62 * @exception MathIllegalArgumentException if sum of derivation orders is larger 63 * than the instance limits 64 */ 65 double getPartialDerivative(int ... orders) 66 throws MathIllegalArgumentException; 67 68 /** {@inheritDoc} */ 69 @Override 70 default T add(double a) { 71 return withValue(getValue() + a); 72 } 73 74 /** {@inheritDoc} */ 75 @Override 76 default T subtract(double a) { 77 return withValue(getValue() - a); 78 } 79 80 /** Compute composition of the instance by a univariate function. 81 * @param f array of value and derivatives of the function at 82 * the current point (i.e. [f({@link #getValue()}), 83 * f'({@link #getValue()}), f''({@link #getValue()})...]). 84 * @return f(this) 85 * @exception MathIllegalArgumentException if the number of derivatives 86 * in the array is not equal to {@link #getOrder() order} + 1 87 */ 88 T compose(double... f) 89 throws MathIllegalArgumentException; 90 91 /** {@inheritDoc} */ 92 @Override 93 default T log10() { 94 return log().divide(FastMath.log(10.)); 95 } 96 97 /** {@inheritDoc} */ 98 @Override 99 default T pow(T e) { 100 return log().multiply(e).exp(); 101 } 102 103 /** {@inheritDoc} */ 104 @Override 105 default T cosh() { 106 return (exp().add(negate().exp())).divide(2); 107 } 108 109 /** {@inheritDoc} */ 110 @Override 111 default T sinh() { 112 return (exp().subtract(negate().exp())).divide(2); 113 } 114 115 /** {@inheritDoc} */ 116 @Override 117 default T acos() { 118 return asin().negate().add(getPi().divide(2)); 119 } 120 121 /** {@inheritDoc} */ 122 @Override 123 default int getExponent() { 124 return FastMath.getExponent(getValue()); 125 } 126 127 /** {@inheritDoc} */ 128 @Override 129 default T remainder(double a) { 130 return withValue(FastMath.IEEEremainder(getValue(), a)); 131 } 132 }